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Abstract

In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices S(Y ) =
Y Y ∗, where Y = (yij) is an M ×N matrix with iid mean 0 variance N−1 entries. We consider
the regime M = M(N) and M/N → c∞ ∈ R\{1} as N →∞. It is known that for the extreme
eigenvalues of Wigner matrices and the largest eigenvalue of S(Y ), a weak 4th moment condition
is necessary and sufficient for the Tracy-Widom law [21, 49]. In this paper, we show that the Tracy-
Widom law is more robust for the smallest eigenvalue of S(Y ), by discovering a phase transition
induced by the fatness of the tail of yij ’s. More specifically, we assume that yij is symmetrically
distributed with tail probability P(|

√
Nyij| ≥ x) ∼ x−α when x→∞, for some α ∈ (2, 4). We

show the following conclusions: (i). When α > 8
3

, the smallest eigenvalue follows the Tracy-Widom

law on scale N−
2
3 ; (ii). When 2 < α < 8

3
, the smallest eigenvalue follows the Gaussian law on scale

N−
α
4 ; (iii). When α = 8

3
, the distribution is given by an interpolation between Tracy-Widom and

Gaussian; (iv). In case α ≤ 10
3

, in addition to the left edge of the MP law, a deterministic shift of

order N1−α
2 shall be subtracted from the smallest eigenvalue, in both the Tracy-Widom law and

the Gaussian law. Overall speaking, our proof strategy is inspired by [4] which is originally done for
the bulk regime of the Lévy Wigner matrices. In addition to various technical complications arising
from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left
edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the
linear spectral statistic with asymptotic expansion for its expectation.

Keywords: sample covariance matrix, smallest eigenvalue, Tracy-Widom law, heavy-tailed random matrix

1 Introduction

1.1 Main results

As one of the most classic models in random matrix theory, the sample covariance matrices have been
widely studied. When considering the high-dimensional setting it is well-known that the empirical spectral
distribution converges to Marchenko-Pastur law (MP law). Inspired by problems such as PCA, the
extreme eigenvalue has also been extensively studied. Among the most well-known results in this direction
are probably the Bai-Yin law [9] on the first order limit and the Tracy-Widom law [38, 39] on the second
order fluctuation of the extreme eigenvalues. More specifically, let Y = (yij) ∈ RM×N be a random

matrix with i.i.d. mean 0 and variance N−1 entries, and assume that
√
Nyij ’s are i.i.d. copies of an

random variable Θ which is independent of N . The covariance matrix with the data matrix Y is defined
as S(Y ) = Y Y ∗. Let λ1(S(Y )) ≥ . . . ≥ λM (S(Y )) be the ordered eigenvalues of S(Y ). We denote by

µN = 1
M

∑M
i=1 δλi the empirical spectral distribution. In the regime M = M(N), cN := M/N → c∞ ∈
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(0,∞) as N →∞, it is well known since [52] that µN is weakly approximated by the MP law

ρmp(dx) =
1

2πcNx

√
[(λmp

+ − x)(x− λmp
− )]+dx+ (1− 1

cN
)+δ0(x), λmp

± = (1±
√
cN )2. (1)

The Stieltjes transform of ρmp is denoted as mmp(z), which satisfies the following equation:

zcNm2
mp(z) +

(
z − (1− cN )

)
mmp(z) + 1 = 0. (2)

Equivalently,

mmp(z) =
1− cN − z + i

√
(λmp

+ − z)(z − λ
mp
− )

2zcN
, (3)

where the square root is taken with a branch cut on the negative real axis.
Throughout the paper, we will be interested in the regime c∞ 6= 1. In this case, both λmp

± are called
soft edges of the spectrum. Regarding the extreme eigenvalues, Bai-Yin law [9] states that

λ1(S(Y ))− λmp
+

a.s.−→ 0, λM∧N (S(Y ))− λmp
−

a.s−→ 0,

as long as E|
√
Nyij |4 < ∞ is additionally assumed. It is also shown in [9] that E|

√
Nyij |4 < ∞ is

necessary and sufficient for the convergence of λ1(S(Y )) to λmp
+ . It had been widely believed that the

convergence of the smallest eigenvalue λM∧N (S(Y )) to λmp
− requires a weaker moment condition, and

indeed it was shown in [60] that the condition of mean 0 and variance 1 for
√
Nyij ’s is already sufficient.

On the level of the second order fluctuation, as an extension of the seminal work on Wigner matrix [49],
it was shown in [21] that the sufficient and necessary condition for the Tracy-Widom law of λ1(S(Y )) is
the existence of a weak 4-th moment

lim
s→∞

s4P(|
√
Ny11| ≥ s) = 0. (4)

Similarly to the first order result in [60], it has been believed that the Tracy-Widom law shall hold for
the smallest eigenvalue λM∧N (S(Y )) under a weaker condition. In this work, we are going to show that
the smallest eigenvalue counterpart of (4) is

lim
s→∞

s
8
3P(|
√
Ny11| ≥ s) = 0,

under Assumption 1 below. Moreover, when the tail P(|
√
Ny11| ≥ s) becomes heavier, the distribution of

λM∧N (S(Y )) exhibits a phase transition from Tracy-Widom to Gaussian. For technical reason, we make
the following assumptions on S(Y ).
Assumption 1. We make the following assumptions on the covariance matrix S(Y ).

(i). (On matrix entries) We suppose that
√
Nyij’s are all iid copies of a random variable Θ which

is independent of N . Suppose that EΘ = 0 and EΘ2 = 1. We further assume that Θ is symmetrically
distributed, absolutely continuous with a positive density at 0 and as s→∞,∣∣∣∣P(Θ > s) +

c

Γ(1− α/2)
s−α

∣∣∣∣ . s−(α+%)

for some α ∈ (2, 4), some constant c > 0 and some small % > 0,
(ii). (On dimension) We assume that M := M(N) and as N →∞

cN :=
M

N
→ c∞ ∈ (0,∞) \ {1}.

Our results are collected in the following main theorem. For brevity, we assume M < N throughout
this paper. Analogous results can be easily obtained by switching the role of M and N when M > N .
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Theorem 1.1. Suppose that Assumption 1 holds. There exists a random variable Xα, such that the
following statements hold when N →∞.
(i):

−M 2
3

√
cN (1−√cN )4/3

(
λM∧N (S(Y ))− λmp

− −Xα
)
⇒ TW1.

(ii):

N
α
4

(
Xα − EXα

)
σα

⇒ N(0, 1), σ2
α =

cc
(4−α)/4
N (1−√cN )4(α− 2)

2
Γ
(α

2
+ 1
)
.

(iii):

EXα = −N1−α2
c(1−√cN )2

c
(α−2)/4
N

Γ
(α

2
+ 1
)

+ o(N1−α2 ),

(iv): In case α = 8/3, the following convergence holds:

−M 2
3

√
cN (1−√cN )

4
3

(
λM∧N (S(Y ))− λmp

− − EXα
)
⇒ TW1 +N (0, σ̃2), σ̃2 =

cc
2
3∞(1−√c∞)

4
3

3
Γ

(
7

3

)
.

where TW1 and N (0, σ̃) in the RHS of the above convergence are independent.

Remark 1. From the above theorem, we can see that a phase transition occurs at α = 8/3. When
α > 8/3, the fluctuation of λM∧N (S(Y )) is governed by TW1 on scale N−2/3. When 2 < α < 8/3, the
fluctuation is dominated by that of Xα, and thus it is Gaussian on scale N−α/4. In the case α = 8/3,
the limiting distribution is given by the convolution of a Tracy-Widom and Gaussian. When α ≤ 10/3,
a shift of order N1−α/2 is created by EXα. We remark here that a natural further direction is to exploit
the expansion of EXα up to an order smaller than the fluctuation. But due to technical reason, we do
not pursue this direction in the current paper.

1.2 Related References

The Tracy-Widom distribution in random matrices was first obtained for GOE and GUE in [62, 63] and
was later extended to Wishart matrices in [38] and [39]. In the past few decades, the universality of the
Tracy-Widom law has been extensively studied. The extreme eigenvalues of many random matrices with
general distributions and structures have been proven to follow the Tracy-Widom distribution. We refer to
the following literature [6, 10, 23, 28, 30, 41, 43, 46, 47, 49, 53–57, 59] for related developments. Although
the Tracy-Widom distribution is very robust, some phase transitions may occur when considering heavy-
tailed matrices or sparse matrices. For example, for sparse Erdős-Rényi graphs G(N, p), it is known from
[36] that a phase transition from Tracy-Widom to Gaussian will occur when p crosses N−2/3. We also
refer to [27, 31, 35, 45, 48] for related study. For heavy-tailed Wigner matrices or sample covariance
matrices, as we mentioned, according to [49] and [21], the largest eigenvalue follows the Tracy Widom
distribution if and only if a weak 4-th moment condition is satisfied. From [7, 20, 58], we also know the
distribution of the largest eigenvalue when the matrix entries have heavier tail. We would also like to
mention the recent research on the mobility edge of Lévy matrix with α < 1 in [5]. On the other hand, if
we focus on bulk statistics, universality will be very robust. For any α > 0, it is proved in [2, 4] that the
bulk universality is valid. An extension of [4] to the hard edge of the covariance matrix in case M = N
is considered in [50]. In our current work, we focus on the regime α ∈ (2, 4) for the left edge of the
covariance matrices. According to [12], even the global law will no longer be MP law in case α < 2, and
thus we expect a significantly different analysis is needed in this regime. Regarding other works on the
behaviour of the spectrum for heavy-tailed matrices, we refer to [13, 14, 16–18, 32, 33, 40] for instance.
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1.3 Proof strategy

Our starting point is a decomposition of Y , or more precisely a resampling of Y , from the work [4].
Consider the Bernoulli 0− 1 random variables ψij and χij defined by

P[ψij = 1] = P[|yij | ≥ N−εb ], P[χij = 1] =
P[|yij | ∈ [N−1/2−εa , N−εb ]]

P[|yij | < N−εb ]
(5)

for some small positive constants εa, εb. In the sequel, we shall first choose εb and then choose εa = εa(εb, α)
to be sufficiently small. Specifically, throughout the discussion, we can make the following choice

0 < εb < (α− 2)/10α, 0 < εa < min{εb, 4− α}/10000. (6)

Let a, b, and c be random variables such that

P[aij ∈ I] =
P[yij ∈ (−N−1/2−εa , N−1/2−εa) ∩ I]

P[|yij | ≤ N−1/2−εa ]
,

P[bij ∈ I] =
P[yij ∈

(
(−N−εb ,−N−1/2−εa ] ∪ [N−1/2−εa , N−εb)

)
∩ I]

P[|yij | ∈ [N−1/2−εa , N−εb)]
,

P[cij ∈ I] =
P[yij ∈

(
(−∞,−N−εb) ∪ (N−εb ,∞)

)
∩ I]

P[|yij | ≥ N−εb ]
.

For each (i, j) ∈ [M ]× [N ], we set

Aij = (1− ψij)(1− χij)aij , Bij = (1− ψij)χijbij , Cij = ψijcij

where a, b, c, ψ, χ-variables are all mutually independent. Sample Y and X by setting

Y = A + B + C, X = B + C. (7)

The dependence among A,B and C is then governed by the ψ and χ variables.
The purpose of the above decomposition, especially the separation of part A, is to view our model as

a deformed model. We hope that the light-tailed part A can regularize the spectrum of the heavy-tailed
part X = B + C, leading to the emergence of the edge universality. This idea is rooted in the dynamic
approach developed in the last decade. We refer to the monograph [26] for a detailed introduction of this
powerful approach, and also refer to [1, 3, 19, 24, 25, 34, 42–44] for instance. On a more specific level,
our proof strategy is inspired by [4] where the authors consider the bulk statistics of the Lévy Wigner
matrices in the regime α ∈ (0, 2), which we will denote by H in the sequel. In [4], the main idea to prove
the bulk universality of the local statistics is to compare the Lévy Wigner matrix H = AH + BH + CH
with the Gaussian divisible model Ht =

√
tWH + BH + CH , where AH ,BH and CH are defined similarly

to A,B,C above, and WH is a GOE independent of H. Here t is chosen in such a way that
√
t(WH)ij

matches (AH)ij up to the third moment, conditioning on (ψH)ij = 0, where ψH is defined similarly to
ψ. Roughly speaking, the proof strategy of [4] is as follows. First, one needs to prove that the spectrum
of BH + CH satisfies an intermediate local law, which shows that the spectral density of BH + CH is
bounded below and above at a scale η∗ ≤ N−δt. This control of the spectral density is also called η∗-
regularity. Next, with the η∗-regularity established, one can use the results from [43] to prove that the√
tWH component can improve the spectral regularity to the optimal (bulk) scale η ≥ N−1+δ, and further

obtain the bulk universality of Ht. Finally, one can prove that the bulk local eigenvalue statistics of H
and Ht have the same asymptotic distribution by comparing the Green functions of H and Ht. However,
the main difficulty here is that, unlike in Ht, the small part AH and the major part BH + CH in H are
not independent. They are coupled by the ψ and χ variables. Despite this dependence being explicit,
great effort has been made to carry out the comparison in [4].

At a high level, our proof strategy involves adapting the approach from [4] for the bulk regime to
the left edge of the covariance matrices. However, this adaptation is far from being straightforward. We
summarize some major ideas as follows.
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1. (Intermediate local law) Similar to many previous DBM works, if we want to initiate the analysis,
we need an intermediate local law for the X = B + C part. More precisely, we require an η∗-regularity of
the eigenvalue density for S(X) = XX∗ at the left edge of the MP law, for some η∗ � 1. According to
[7], such a regularity cannot be true at the right edge of the spectrum. In order to explain heuristically
the difference between the largest and smallest eigenvalues under the heavy-tailed assumption, we recall
the variational definition of the smallest and largest singular values of X, which are also the square roots
of the corresponding eigenvalues of S(X),

σM (X) = inf
v∈SM−1

‖X∗v‖2 , σ1(X) = sup
v∈SM−1

‖X∗v‖2 . (8)

Denote by vM and v1 the right singular vectors of X∗ corresponding to σM (X) and σ1(X), respectively.
From the variational representation, it is clear that v1 favors the large entry of X∗, and thus σ1(X) will
be large as long as there is a big entry in X. This is indeed the case when the weak 4-th moment condition
is not satisfied. In contrast, in (8), since vM is the minimizer, it tries to avoid the big entries of X∗, i.e.,
it tends to live in the null space of C∗. Hence, heuristically, we can believe that removing the C entries
will not significantly change the smallest singular value, as long as the null space of C is sufficiently big.
This will be true if rank(C) = o(N), which indeed holds when α > 2. This simple heuristic explains why
the first order behaviour of the smallest singular value of X, is more robust under the weak moment
condition, in contrast to the largest singular value. It also indicates the following strategy for obtaining
an intermediate local law for X. Let Ψ = (ψij). We define the index sets

Dr := Dr(Ψ) :=
{
i ∈ [M ] :

N∑
j=1

ψij ≥ 1
}
, Dc := Dc(Ψ) :=

{
j ∈ [N ] :

M∑
i=1

ψij ≥ 1
}

(9)

which are the index set of rows/columns in which one can find at least one nonzero ψij . For any matrix
A ∈ CM×N , let A(Dr) and A[Dc] be the minors of A with the Dr rows and Dc columns removed,
respectively, and we also use S(B) = BB∗ for any rectangle matrix B in the sequel. By Cauchy interlacing,
we can easily see that

λM (S(X [Dc])) ≤ λM (S(X)) ≤ λM−|Dr|(S(X(Dr)))

Further notice that X(Dr) = B(Dr) and X [Dc] = B[Dc], and thus we have

λM (S(B[Dc])) ≤ λM (S(X)) ≤ λM−|Dr|(S(B(Dr))). (10)

Conditioning on the matrix Ψ, we notice that both S(B[Dc]) and S(B(Dr)) are random matrices with
bounded support, since |bij | ≤ N−εb . For such matrices, one has a local law with precision N−2εb ; see
[37]. This local law together with (10) will give a rigidity estimate of λM (S(X)) on scale η∗ = N−εb

according to our choice in (6). Similarly applying the above row and column minor argument, one can
derive an intermediate local law for X, which implies that X satisfies the η∗-regularity at the left edge.
We remark here that in our regime α ∈ (2, 4), a weak intermediate local law, or alternatively, a weak
regularity with η∗ ∼ N−ε for some small ε > 0 would be sufficient. This is always possible if we choose
a suitable εb. In contrast, in the work [4], in the regime α ∈ (0, 2), a stronger regularity with a more
carefully chosen η∗ is actually needed.

2. (Gaussian divisible ensemble) We then consider the Gaussian divisible model

Vt :=
√
tW + B + C =

√
tW +X, S(Vt) = VtV

∗
t , (11)

where W = (wij) ∈ RM×N is a Gaussian matrix with iid N(0, N−1) entries, and t = NE|Aij |2 (slightly
different from the choice in [4] for convenience). With the η∗-regularity of S(X), we then choose 1 �
t � √η∗. Actually, our t would be order N−2εa . By choosing εa sufficiently small in light of (6), our t
can be sufficiently close to 1. By conditioning on the matrix X, the following edge universality can be
achieved for the Gaussian divisible model S(Vt) by extending the result in [43] and [23] to the left edge
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of the sample covariance matrices

N
2
3 γ
(
(λM (S(Vt))− λ−,t

)
⇒ TW1, (12)

for some constant γ, where λ−,t can be approximated by a mesoscopic statistic of the spectrum of S(X).
Specifically,

λ−,t = (1− cN tmX(ζ−,t))
2ζ−,t + (1− cN )t(1 + cN tmX(ζ−,t)), (13)

where mX is the Stieltjes transform of the spectral distribution of S(X), and ζ−,t is a random parameter
defined through (26). We remark here that even though ζ−,t is random, it can be proven that with a
high probability, λM (S(X)) − ζ−,t ∼ t2. Hence, regarding the Stieltjes transform mX(ζ−,t), we are at
a (random) mesoscopic energy scale of order t2. From the work [15, 51], one already knows that the
global statistic mX(z)− EmX(z) follows a CLT on scale N−α/4 for a fixed z with Im z > 0. Due to the
randomness of our parameter ζ−,t, a further expansion of it around a deterministic parameter ζe will be
needed to adapt the argument in [15, 51]. Consequently, after the expansion, we will need to control the

fluctuations of m
(k)
X (ζe) for k = 0, . . . ,K with a sufficiently large K. Studying the fluctuations of these

mesoscopic statistics eventually leads to a CLT

N
α
4 (λ−,t − Eλ−,t)⇒ N(0, σ2

α).

In addition to the above CLT, we need one more step to study the expansion of Eλ−,t. It turns out that

Eλ−,t = λmp
− −N1−α2 sα + o(N1−α2 ).

3. (Green function comparison)
Finally, we shall extend the result (12) from the Gaussian divisible model to our original matrix

S(Y ), using a Green function comparison inspired by [4]. It is now well-understood that one can compare
certain functionals of the Green functions of two matrices instead of their eigenvalue distributions. Recall
Yt from (11), and we define the interpolations

Y γ = γA + t1/2(1− γ2)1/2W + B + C, Sγ = Y γ(Y γ)∗,

Gγ(z) = (Sγ − z)−1, Gγ(z) = ((Y γ)∗Y γ − z)−1 mγ(z) =
1

M
TrGγ(z), (14)

In order to extend (12) from S0 = S(Vt) to S1 = S(Y ), from [54] for instance, we know that it suffices
to establish the following result for some smooth bounded F : R→ R with bounded derivatives

∣∣∣EF(N ∫ E2

E1

dE Imm1(λ−,t + E + iη0)
)
− EF

(
N

∫ E2

E1

dE Imm0(λ−,t + E + iη0)
)∣∣∣ ≤ N−δ, (15)

where E1 < E2, and |Ei| ≤ N−
2
3 +ε for i = 1, 2, and η0 = N−

2
3−ε, if we have the rigidity estimate

|λM (Sa)− λ−,t| ≺ N−
2
3 , a = 0, 1 (16)

The estimate is easily available for the case a = 0 (Gaussian divisible model) by a straightforward
extension of [43] and [23]. This rigidity estimate for case a = 0 is actually a technical input of getting
(12). Hence, before the comparison in (15), we shall first prove (16) for a = 1, again by a Green function
comparison. We claim that it suffices to show for all z−,t = λ−,t + κ + iη, with |κ| ∈ N−εb/2, and

η ∈ [N−
2
3−ε, N−ε] with some small ε > 0,

E
∣∣∣Nη(Imm1(z−,t)− Im m̃0(z−,t))

∣∣∣2k ≤ (1 + o(1))E
∣∣∣Nη(Imm0(z−,t)− Im m̃0(z−,t))

∣∣∣2k +N−δk. (17)
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Similar estimate also holds when one replaces Im to Re . Here we introduced a copy of m0(z)

m̃0(z) =
1

M
Tr(
√
tW̃ +X − z)−1,

and W̃ is an iid copy of W . Actually, for the Gaussian divisible model, conditioning on X and extending
the Theorem 3 in [22] on the deformed rectangle matrices from the right edge to the left edge, one can
actually get the estimate

∣∣Imm0(z−,t)− Immt(z−,t)
∣∣ ≺


1
Nη , if κ ≥ 0,

1
N(|κ|+η) + 1

(Nη)2
√
|κ|+η

, if κ ≤ 0,
(18)

wheremt is defined in (25). Apparently, the above estimates also hold withm0 replaced by m̃0. Combining
these estimates with (17) leads to the bounds |Imm1(z−,t)− Immt(z−,t)| ≺ 1/(Nη) when κ > −N− 2

3 +ε

and |Imm1(z−,t) − Immt(z−,t)| � 1/(Nη) (w.h.p) when κ ≤ −N− 2
3 +ε. Such estimates together with

the real part analogue of the former will finally lead to the rigidity estimate in (16).
The proofs of (15) and (17) are similar. We can turn to bound

d EF
(
N

∫ E2

E1

Immγ(z0
−,t)dE

)
/dγ (19)

for z0
−,t := λ−,t + E + iη0 with η0 = N−

2
3−ε, and

d E|Nη(Immγ(z−,t)− Im m̃0(z−,t))|2k/dγ (20)

for z−,t = λ−,t + E + iη, where E ∈ (−N−εb/2, N− 2
3 +ε) and η = N−

2
3 . Actually, we shall first condition

on Ψ, and then first estimate EΨ and then use a law of total expectation to estimate the full expectation.
When one try to take the derivatives in (19)-(20) and estimate the resulting terms, we will need a priori
bounds for the Green function entries

Gγij(z), Gγuv(z), ((Y γ)∗Gγ(z))ui (21)

in the domain

D = D(ε1, ε2, ε3) := {z = λmp
− + E + iη : |E| ≤ N−ε1 , η ∈ [N−

2
3−ε2 , ε3]} (22)

with appropriately chosen small constants ε1, ε2, ε3. We shall show that most of these entries are stochas-
tically dominated by 1 while a small amount of them are stochastically dominated by 1/t2. These bounds
are not even known for the Gaussian divisible case, i.e., γ = 0, at the edge. The idea is to first prove
the desired bounds of the quantities in (21) for γ = 0, and then prove another comparison result for the
Green functions ∣∣∣E|Gγij(z)|2k − E|G0

ij(z)|2k
∣∣∣ ≤ N−δ (23)

for all z ∈ D. Here we refer to [4] and [41] for similar strategy of using comparison to prove Green
function bounds on local scale. Hence, based on the above discussion, the proof route is as following

bounds of (21) for γ = 0 (23) (17) (15)

which requires a three steps of Green function comparison with different observables. In contrast, in [4],
one Green function comparison for the observable F (ImGa1b1(z), · · · , ImGambm(z)) (and its real part
analogoue) with a deterministic parameter z in the bulk regime would be sufficient. Also notice that
our parameter z−,t in (15) is random, which further complicates the comparison. Specifically, when we
do expansions of the Green function entries w.r.t. the matrix entries, we shall also keep tracking the
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derivatives of λ−,t w.r.t to these entries. The estimates of these derivatives involve delicate analysis of
the subordination equations.

Regarding the bounds of (21) for γ = 0, here we shall explain the argument for Gij only for simplicity.
The other two kinds of entries in (21) can be handled similarly. For the Gaussian divisible model,
conditioning on X, by extending the Theorem 3 in [22] on the deformed rectangle matrices from the
right edge to the left edge, with the η∗-regularity of the spectrum of S(X), we have for z ∈ D

|G0
ij(z)−Πij(z)| ≺

(
t
(√ Immt(z)

Nη
+

1

Nη

)
+

t1/2

N1/2

)
$−2(z),

where $ is of order t2 + η, and

Πij = (1 + cN tmt)
(
XX∗ − ζt(z))

)−1

ij
=: (1 + cN tmt)Gij(X, ζt(z)).

which is simply a multiple of a Green function entries of S(X), but evaluated at a random parameter
ζt(z). By the facts t ∼ N−2εa , η & N−

2
3−ε2 and |mt(z)| ≤ (ct|z|)−1/2 (cf. Lemma 2.1 (iv)), one can easily

get |G0
ij(z)− Πij(z)| ≺ 1. Hence, what remains is to bound Πij , i.e., to bound Gij(X, ζt(z)), the Green

function entry of the heavy-tailed covariance matrix S(X), in the regime 2 < α < 4. We notice that such
a bound has been obtained in [2] for the heavy-tailed Wigner matrices in the same regime of α, but in
the bulk. Extending such a bound to edge could be difficult due to the deterioration of the stability of
self-consistent equation of the Stieltjes transform. However, we notice that with the η∗-regularity of the
left edge of S(X) spectrum, one can show that the parameter ζt(z) is away from the left edge of the S(X)
spectrum by a distance of order t2. Hence, we are away from the edge by a mesoscopic distance, which
allow us the conduct the argument similarly to the bulk case in [2] to get the desired bound for Πij(z).

1.4 Organization

The rest of the paper will be organized as follows. In Section 2, we will state the main results for the
Gaussian divisible model, whose proofs will be stated in Section 3. Section 4 is devoted to the statements
of the Green function comparisons and prove our main theorem based on the comparisons. In Section 5,
we prove these comparison results. Some technical estimates are stated in the supplementary material
[11].

1.5 Notation

Throughout this paper, we regard N as our fundamental large parameter. Any quantities that are not
explicit constant or fixed may depend on N ; we almost always omit the argument N from our notation.
We use ‖u‖α to denote the `α-norm of a vector u. We further use ‖A‖ for the operator norm of a matrix
A. We use C to denote some generic (large) positive constant. The notation a ∼ b means C−1b ≤ |a| ≤ Cb
for some positive constant C. Similarly, we use a . b to denote the relation |a| ≤ Cb for some positive
constant C. O and o denote the usual big and small O notation, and Op and op denote the big and
small O notation in probability. When we write a � b and a � b for possibly N -dependent quantities
a = a(N) and b = b(N), we mean |a|/b→ 0 and |a|/b→∞ when N →∞, respectively. For any positive
integer n, let [n] = [1 : n] denote the set {1, . . . , n}. For a, b ∈ R, a∨ b = max{a, b} and a∧ b = min{a, b}.
For a square matrix A ∈ Rn×n, we let Adiag = (Aijδij) ∈ Rn×n. We adopt the following Green function
notation for any rectangle matrix A ∈ Rm×n, G(A, z) = (AA> − z)−1.

2 Gaussian divisible model

In this section, we state the main results for a Gaussian divisible model, and leave the detailed proofs to
the next section.
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2.1 Some definitions

Recall that W = (wij) ∈ RM×N is a Gaussian matrix with iid N(0, N−1) entries, and t = NE|Aij |2.
Consider the standard signal-plus-noise model

Vt := X +
√
tW. (24)

In this section, we will establish several spectral properties of S(Vt) that will be extended to S(Y ) later.
For most of the discussion in this part, we will condition on X and regard it as given, and work with
the randomness of W . In light of this, we introduce the asymptotic eigenvalue density of S(Vt), denoted
by ρt, through its corresponding Stieltjes transform mt := mt(z). For any t > 0, mt is known to be the
unique solution to the following equation:

mt =
1

M

M∑
i=1

1 + cN tmt

λi(S(X))− ζt
, (25)

subject to the condition that Immt > 0 for any z ∈ C+. Here

ζt := ζt(z) := (1 + cN tmt(z))
2z − t(1− cN t)(1− cN tmt(z)). (26)

In the context of free probability theory, ρt corresponds to the rectangular free convolution of the spectral
distribution of S(X) with the MP law on scale t, and ζt is the so-called subordination function for the
rectangular free convolution. The following lemma provides a precise description of the existence and
uniqueness of the asymptotic density. The following result holds for any realization of X.
Lemma 2.1 (Existence and uniqueness of asymptotic density, Lemma 2 of [22]). For any t > 0, the
following properties hold.
(i) There exists a unique solution mt to equation (25) satisfying that Immt(z) > 0 and Im zmt(z) > 0

if z ∈ C+.
(ii) For all E ∈ R \ {0}, limη↓0mt(E + iη) exits, and we denote it as mt(E). The function mt is

continuous on R \ {0}, and ρt(E) := π−1Immt(E) is a continuous probability density function on
R+ := {E ∈ R : E > 0}. Moreover, mt is the Stieltjes transform of ρt. Finally, mt(E) is a solution
to (25) for z = E.

(iii) For all E ∈ R\{0}, limη↓0 ζt(E+iη) exits, and we denote it as ζt(E). Moreover, we have Im ζt(z) > 0
if z ∈ C+.

(iv) We have Re (1 + cN tmt(z)) > 0 for all z ∈ C+ and |mt(z)| ≤ (cN t|z|)−1/2.
For a realization of X, we can check if it satisfies the following regularity condition on mX(z). Such

a condition is crucial for the edge universality of DBM; see [22, 43] for instance.
Definition 1 (η∗- regularity). Let η∗ be a parameter satisfying η∗ := N−τ∗ for some constant 0 < τ∗ ≤
2/3. For an M ×N matrix H, we say S(H) is η∗-regular around the left edge λ− = λM (S(H)) if there
exist constants cH > 0 and CH > 1 such that the following properties hold:
(i) For z = E + iη with λ− ≤ E ≤ λ− + cH and η∗ +

√
η∗|E − λ−| ≤ η ≤ 10, we have

1

CH

√
|E − λ−|+ η ≤ ImmH(E + iη) ≤ CH

√
|E − λ−|+ η. (27)

For z = E + iη with λ− − cH ≤ E ≤ λ− and η∗ ≤ η ≤ 10, we have

1

CH

η√
|E − λ−|+ η

≤ ImmH(E + iη) ≤ CH
η√

|E − λ−|+ η
. (28)

(ii) We have cH/2 ≤ λ− ≤ 2CH .
(iii) We have ‖S(H)‖ ≤ NCH .

The following lemma is a direct implication of η∗- regularity.
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Lemma 2.2 (Lemma 6 of [22]). Suppose (a realization of) S(X) is η∗-regular in the sense of Definition
1. Let µX be the measure associated with mX(z). For any fixed integer k ≥ 2, and any z ∈ D with

D :=
{
z = E + iη : λ− −

3

4
c̃ ≤ E ≤ λ−, 2η∗ ≤ η ≤ 10

}
∪
{
z = E + iη : λ− ≤ E ≤ λ− +

3

4
c̃, η∗ +

√
η∗(E − λ−) ≤ η ≤ 10

}
∪
{
z = E + iη : λ− −

3

4
c̃ ≤ E ≤ λ− − 2η∗, 0 ≤ η ≤ 10

}
.

Then we have ∫
dµX(x)

|x− E − iη|k
∼
√
|E − λ−|+ η

ηk−1
1E≥λ− +

1

(|E − λ−|+ η)k−3/2
1E<λ− .

The following notion of stochastic domination which originated from [29] will be used throughout the
paper.
Definition 2 (Stochastic domination). Let X = (X(N)(u) : N ∈ N, u ∈ U(N)),Y = (Y(N)(u) : N ∈ N, u ∈
U(N)) be two families of random variables, where Y is nonnegative, and U(N) is a possibly N -dependent
parameter set. We say that X is stochastically dominated by Y, uniformly in u, if for all small ε > 0 and
large D > 0,

sup
u∈U(N)

P
(∣∣∣X(N)(u)

∣∣∣ > NεY(N)(u)
)
6 N−D

for large enough N > N0(ε,D). If X is stochastically dominated by Y, uniformly in u, we use the notation
X ≺ Y , or equivalently X = O≺(Y). Note that in the special case when X and Y are deterministic,
X ≺ Y means that for any given ε > 0, |X(N)(u)| ≤ N εY(N)(u) uniformly in u, for all sufficiently large
N ≥ N0(ε).

2.2 η∗- regularity of S(X): A matrix minor argument

In this subsection, we state that with high probability η∗-regularity holds for S(X) with η∗ = N−εb .
Recall that X defined in (7). Let us recall Ψ = (ψij) ∈ RM×N , a random matrix with entries ψij as
defined in (5). By setting

εα = (α− 2)/5α, (29)

we call a Ψ good if it has at most N1−εα entries equal to 1. The following lemma indicates that Ψ is,
indeed, good with high probability.
Lemma 2.3. For any large D > 0, we have P(ΩΨ = {Ψ is good}) ≥ 1−N−D.

Proof. Observe that P(ΩΨ = {Ψ is good}) = 1 − P(#{(i, j) : xij > N−εb} > N1−εα). By Assumption 1
(i), we have

P(#{(i, j) : xij > N−εb} > N1−εα) .
N2∑

j=N1−εα

(
N2

j

)
N−α(1/2−εb)j .

N2∑
j=N1−εα

N−(α−2)j/2 . N−D.

The claim now follows by possibly adjusting the constants.

Given any Ψ is good, the following proposition shows that S(X) is η∗-regular with η∗ = N−τ∗ for
some τ∗ > 0. Actually, we shall work with a truncation of X, XC := (xij1|xij |≤N100)i∈[M ],j∈[N ], in order

to guarantee Definition 1 (iii). Apparently, ‖S(XC)‖ ≤ N102 and P(X = XC) = 1− o(1).
Proposition 2.4 (η∗- regularity of S(X)). Suppose that Ψ is good. Let η∗ = N−εb . Then S(X) is
η∗-regular around its smallest eigenvalue λM (S(X)) in the sense of Definition 1 with high probability.

The proof of Proposition 2.4 is based on the following two lemmas. For notational simplicity, we

define m
(t)
mp(z) := (1− t)−1mmp(z/(1− t)) for any t > 0.
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Lemma 2.5. Fix C > 0. Let us consider z ∈ {E + iη : C−1λmp
− ≤ E ≤ λ

mp
+ + 1, 0 < η < 3}. We have

|mB(z)−m(t)
mp(z)| ≺ N−εb + (Nη)−1. (30)

In addition,
|λM (S(B))− (1− t)λmp

− | ≺ N−2εb +N−2/3. (31)

Proof. We further denote by t̃ := 1 − NE|Bij |2. It is easy to show that |t̃ − t| = o(N−1), and thus we

have |m(t)
mp(z)−m

(t̃)
mp(z)| ≤ (Nη)−1. Hence, it suffices to show the following estimates

|mB(z)−m(t̃)
mp(z)| ≺ N−εb + (Nη)−1, |λM (S(B))− (1− t̃)λmp

− | ≺ N−2εb +N−2/3. (32)

Notice that B is a so-called random matrix with bounded support. The first estimate in (32) is given
by [37, Theorem 2.7]. We can show the second estimate in (32) adapting the proof of [37, Theorem 2.9]
from the right edge to the left edge, in a straightforward way, given a crude lower bound of λM (S(B))
which is guaranteed by [61]. We omit the details.

Lemma 2.6. Suppose Ψ is good. Then, we have |λM (S(X))− (1− t)λmp
− | ≺ N−2εb .

Proof. Denote by N(C) the number of nonzero columns of C. Since Ψ is good, |N(C)| ≤ N1−εα , with
high probability. By Cauchy interlacing, we can easily see that

λM (S(X [Dc])) ≤ λM (S(X)) ≤ λM−|Dr|(S(X(Dr)))

Further notice that X(Dr) = B(Dr) and X [Dc] = B[Dc], and thus we have

λM (S(B[Dc])) ≤ λM (S(X)) ≤ λM−|Dr|(S(B(Dr))).

Applying (31) to S(B[Dc]) and S(B(Dr)) with the modified parameter cN , i.e., M/(N − |Dc|) and (M −
|Dr|)/N respectively, in the definition of λmp

− , we can prove the conclusion with the fact εα > 2εb.

Now we show the proof of Proposition 2.4.

Proof of Proposition 2.4. We shall show three properties (i), (ii) and (iii) (as in Definition 1) holds with
high probability. Suppose that Ψ is good.
(i). Let µX and µB be the empirical spectral distributions of S(X) and S(B), respectively. By the rank
inequality [8, Theorem A.44], |µX − µB| ≤ 2rank(C)/N. Then,

|ImmX(z)− ImmB(z)| ≤
∫ ∣∣∣ η

(λ− E)2 + η2
(µX − µB)(dλ)

∣∣∣.
It follows from η((λ − E)2 + η2)−1 ≤ η−1 that |ImmX(z) − ImmB(z)| . rank(C)/(Nη) = N−εαη−1,
where we use the assumption that Ψ is good. This together with Lemma 2.5 give

|ImmX(z)− Im m(t)
mp(z)| ≺ N−εαη−1 +N−εb + (Nη)−1.

For E ∈ [λM (S(X)), λM (S(X)) + η∗], by Lemma 2.6, we have with high probability that,

|E − (1− t)λmp
− | ≤ |E − λM (S(X))|+ |λM (S(X))− (1− t)λmp

− | ≤ 2η∗.

Thus, for η ≥ η∗, we have Im m
(t)
mp(z) ∼ √η, which implies that ImmX(z) ∼

√
|E − λM (S(X))|+ η.

Similarly, for E ∈ [λM (S(X)) − η∗, λM (S(X))] and η ≥ η∗, we can show that Im mX(z) ∼
η/
√
|E − λM (S(X))|+ η. If E ≥ λM (S(X)) + η∗, we can use the fact |λM (S(X))− (1− t)λmp

− | � η∗ to
obtain that E ≥ (1− t)λmp

− and

√
|E − λM (S(X))|+ η ∼

√
|E − (1− t)λmp

− |+ η.
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Similarly, if E ≤ λM (S(X))− η∗, we obatin E ≤ (1− t)λmp
− and

η√
|E − λM (S(X))|+ η

∼ η√
|E − (1− t)λmp

− |+ η
.

(ii). It holds with high probability by Lemma 2.5. (iii). See Remark 2 below. Therefore, we conclude the
proof.

Remark 2. Rigorously speaking, in order to have the above proposition, we shall work with XC instead
of X. Since these two matrices are identical with probability 1− o(1), any spectral statistics of these two
matrices are identical with probability 1 − o(1). For our main theorem, it would be sufficient to work
with XC instead of X in the sequel. However, for convenience, we will still work with X as if the above
proposition is also true for S(X). In this case, the reader may simply assume that the entries of X are
bounded by N100 (say). We can anyway recover the result without this additional boundedness assumption
by comparing the matrix with its truncated version.

Let λ−,t be the left edge of ρt. The Gaussian part in model (24) can further improve the scale of
the square root behavior of ρt around λ−,t on the event that S(X) satisfies certain η∗- regularity. The
following theorem makes this precise.
Theorem 2.7 (Lemma 1 of [22]). On ΩΨ, we have

ρt ∼
√

(E − λ−,t)+ for λ−,t −
3

4
c̃ ≤ E ≤ λ−,t +

3

4
c̃,

and for z = E + iη ∈ C+,

Immt(z) ∼


√
|E − λ−,t|+ η, λ−,t ≤ E ≤ λ−,t +

3

4
c̃

η√
|E − λ−,t|+ η

, λ−,t −
3

4
c̃ ≤ E ≤ λ−,t

. (33)

Next, we recall the definition in (22). The following theorem provide bounds on the Green function
entries for the Gaussian divisible model. Further recall the notation in (9), we set Tr := [M ] \ Dr,
Tc := [N ] \ Dc.
Theorem 2.8. Suppose that Ψ is good. Let z ∈ D(ε1, ε2, ε3) with 10εa ≤ ε1 ≤ εb/500 and sufficiently
small ε2, ε3. The following estimates hold w.r.t. the probability measure PΨ.
(i)

|Gij(Vt, z)| ≺ 1i∈Tr or j∈Tr + t−2(1− 1i∈Tr or j∈Tr ),

(ii)
|Guv(V >t , z)| ≺ 1u∈Tc or v∈Tc + t−2(1− 1u∈Tc or v∈Tc),

(iii)
|[G(Vt, z)Vt]iu| ≺ N−εb/21i∈Tr or u∈Tc + t−2(1− 1i∈Tr or u∈Tc).

The proof of Theorem 2.8 is based on the following results.
Lemma 2.9. Suppose that the assumptions in Theorem 2.8 hold. There exist constants c, C > 0 such
that for the domain Dζ = Dζ(c, C) ⊂ C+ defined by

Dζ := D1 ∪ D2, (34)

where

D1 := {ζ = E + iη : E ≤ (1− t)λmp
− − ct2, η ≥ ctN−2/3−ε2}

D2 := {ζ = E + iη : η ≥ c(logN)−Ct2}

we have ζt(z) ∈ Dζ with high probability.
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Proof. The proof relies on the definition of ζt(z) as well as the square root behaviour of ρt as stated in
Theorem 2.7; see supplementary material [11] for the detailed proof.

Proposition 2.10. Let Dζ be as in (34). Consider ζ ∈ Dζ . Suppose that Ψ is good. The following
estimates hold w.r.t. the probability measure PΨ. There exists a constant c = c(εa, εα, εb) > 0 such that

|Gij(X, ζ)− δijm(t)
mp(ζ)| ≺ N−c1i,j∈Tr + t−2(1− 1i,j∈Tr ),

|Guv(X>, ζ)− δuvm(t)
mp(ζ)| ≺ N−c1u,v∈Tc + t−2(1− 1u,v∈Tc),

where m
(t)
mp(ζ) = cNm

(t)
mp(ζ)− (1− cN )/ζ.

Proof. The proof of Proposition 2.10 is similar to the light-tailed case proved in [54], but here we shall
apply large deviation formula for heavy-tailed random variables; see supplementary material [11] for the
detailed proof.

Proof of Theorem 2.8. Given the previous results, the proof strategy for this theorem is briefly introduced
in the last paragraph of the Introduction, Section 1, with the detailed proof found in the supplementary
materials [11].

The above theorems provide strong evidence supporting the validity of the Tracy-Widom law for
λM (S(Vt)) around λ−,t. In fact, we are able to establish the following theorem regarding the convergence
of the distribution. Before stating the result, we define the function

Φt(ζ) := (1− cN tmX(ζ))2ζ + (1− cN )t(1− cN tmX(ζ)), (35)

and the scaling parameter

γN := γN (t) := −
(1

2

[
4λ−,tζt(λ−,t) + (1− cN )2t2

]
c2N t

2Φ′′t (ζt(λ−,t))
)−1/3

. (36)

Theorem 2.11. Let f : R→ R be a test function satisfying ‖f‖∞ ≤ C and ‖∇f‖∞ ≤ C for a constant
C. Then we have for any X whose corresponding Ψ is good,

lim
N→∞

E
[
f
(
γNM

2/3(λM (S(Vt))− λ−,t)
)
|X
]

= lim
N→∞

E
[
f
(
M2/3(µGOE

M + 2)
)]
. (37)

This further implies that if Ψ is good,

lim
N→∞

EΨ

[
f
(
γNM

2/3(λM (S(Vt))− λ−,t)
)]

= lim
N→∞

E
[
f
(
M2/3(µGOE

M + 2)
)]
, (38)

where µGOE
M denotes the least eigenvalue of a M by M Gaussian Orthogonal Ensemble (GOE) with

N(0,M−1) off-diagonal entries.
Remark 3. The proof of the above theorem is essentially an adapt of the edge universality for the DBM
in [43] and the analogue for the rectangle DBM in [22, 23]. More specifically, we shall extend the analysis
in [22, 23] from the right edge of the covariance type matrix to the left edge. Based on the η∗-regularity,
the proof is nearly the same as [22, 23], and thus we do not reproduce the details and only provide some
remarks in the supplementary material [11].

2.3 Distribution of λ−,t

Theorem 2.12. There exists a deterministic quantity λshift > 0 depending on N such that the following
two properties hold.
(i)

Nα/4(λ−,t − λshift)

σα
⇒ N (0, 1), σ2

α =
cc

(4−α)/4
N (1−√cN )4(α− 2)

2
Γ
(α

2
+ 1
)
.
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(ii)

λshift = λmp
− −

cN1−α/2(1−√cN )2

c
(α−2)/4
N

Γ
(α

2
+ 1
)

+ o(N1−α/2).

Remark 4. Note that the leading order of λshift only depends on α. The size of the fluctuation of λ−,t
is also determined by α.

The proof of Theorem 2.12 is given in the next section.

3 Proofs for Gaussian divisible model

3.1 Preliminary estimates

Before providing the preliminary estimates for the expansion of the least eigenvalue of S(Vt), we first
state the following lemma, which characterizes the support of ρt and its edges using the local extrema
of Φt(ζ) on R.
Lemma 3.1 (Proposition 3 of [64]). Fix any t > 0. The function Φt(x) on R \ {0} admits 2q positive
local extrema counting multiplicities for some integer q ≥ 1. The preminages of these extrema are denoted
by 0 < ζ1,−(t) ≤ ζ1,+(t) ≤ ζ2,−(t) ≤ ζ2,+(t) ≤ · · · ≤ ζq,−(t) ≤ ζq,+(t), and they belong to the set
{ζ ∈ R : 1− cN tmX(ζt) > 0}. Moreover, λ−,t = Φt(ζ1,−(t)), and ζ1,−(t) < λM (S(X)) < ζ1,+(t).

Remark 5. Here we remark that the model considered in [64] is slightly different in the sense that the
model therein contains many 0 eigenvalues, which will force ζ1,−(t) to be negative. In our case, going
through the same analysis as [64] will simply give 0 < ζ1,−(t).

Next, we shall introduce the deterministic counterpart of ζ−,t (to be denoted by ζ̄−,t). First, we
notice that the MP law holds for both the matrix Vt and X, but with slightly different scaling factors.

Specifically, we have mVt(z) − mmp(z) = op(1) and mX(z) − m
(t)
mp(z) = op(1). Recall the definitions of

ζt(z) in (26) and Φt(ζ) in (35). It is important to note that these two quantities are random, and we
can also define their deterministic counterparts using the Stieltjes transform of the MP Law. We denote
them as follows:

ζ̄t(z) := (1 + cN tmmp(z))2z − t(1− cN t)(1− cN tmmp(z)), (39)

Φ̄t(ζ) := (1− cN tm(t)
mp(ζ))2ζ + (1− cN )t(1− cN tm(t)

mp(ζ)). (40)

To further simplify the notation, we let ζ−,t = ζt(λ−,t) and ζ̄−,t = ζ̄t(λ
mp
− ). Let β = (α− 2)/24.

Lemma 3.2. The following preliminary estimates hold:
(i) ζ−,t − λM (S(X)) ≤ 0, and λM (S(X))− ζ−,t ∼ t2 holds on ΩΨ.

(ii) There exist some sufficiently small constant τ > 0, such that for any z ∈ C+ satisfying |z − ζ−,t| ≤
τt2, we have on ΩΨ that

mX(z)−m(t)
mp(z) ≺ N−β , |m(k)

X (ζ)| . t−2k+1, m
(k)
X (ζ−,t) ∼ t−2k+1, k ≥ 1.

(iii) ζ̄−,t − ζ−,t ≺ N−βt.

Proof. See the supplementary material [11].

We also compute the following limits.
Lemma 3.3. For any t = o(1), we have the following approximations:

(i) m
(t)
mp(ζ̄−,t) = (

√
cN − cN )−1 − tc−1/2

N (1−√cN )−2 +O(t3/2).

(ii) t(m
(t)
mp(ζ̄−,t))

′ = c−1
N (1−√cN )−2/2 +O(t1/2).

(iii) t3(m
(t)
mp(ζ̄−,t))

′′ = c
−3/2
N (1−√cN )−2/4 +O(t1/2).

(iv) γN − c−1/2
N (1−√cN )−4/3 = op(1).

Proof. It is easy to solve ζ̄−,t = (1− t)λmp
− −

√
cN t

2 from (39) and (3). The calculation is then elementary
by the explicit formula (3).
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3.2 Proof of Theorem 2.12

Before giving the proof, we need the following pre-process. First, note that we have the following
deterministic upper bound when Ψ is good:

ζ−,t · 1ΩΨ ≤ λM (S(X)) · 1ΩΨ ≤ λM−|Dr|(S(B(Dr))) · 1ΩΨ ≤ N2−2εb .

This indicates that E(ζ−,t · 1ΩΨ) is well-defined. We define

ζe := E(ζ−,t · 1ΩΨ
), ∆ζ := ζ−,t − ζe. (41)

We also write for z ∈ C+ and an integer k ≥ 0, ∆m(z) := mX(z) − EmX(z) and ∆
(k)
m (z) := m

(k)
X (z) −

Em(k)
X (z), where we remark that ∆m(z) = ∆

(0)
m (z). It is noteworthy that EmX(z) is well-defined when

z possesses a non-zero imaginary part. To ensure that the expectation of mX(ζe) exist, we add a small

imaginary part to ζe, and define for any Kζ > 0, ζ̂e = ζ̂e(Kζ) := ζe + iN−100Kζ .
We will begin by stating some preliminary bounds useful to estimate Eλ−,t.

Lemma 3.4. Recall that β = (α − 2)/24. There exists some small τ > 0, such that for any z ∈ C+

satisfies |z − ζe| ≤ τt2 and Im z ≥ N−100Kζ , the following a priori high probability bounds:

∆(k)
m (z) ≺ N−βt−2k, and ∆ζ ≺ N−β/2t2 (42)

Furthermore, we have the following a priori variance bounds:

Var(∆(k)
m (z)) ≤ N−1+εt−2k−4, and Var(∆ζ1ΩΨ) ≤ N−1+ε. (43)

We postpone the proof of Lemma 3.4 to the end of this subsection. Let us prove Theorem 2.12
equipped with Lemma 3.4.

Proof of Theorem 2.12. Recall the expression of λ−,t in (13). We shall switch ζ−,t and mX(ζ−,t) with ζe

and EmX(ζ̂e) respectively. First, expanding mX(ζ−,t) around mX(ζe), we have for sufficiently large s > 0,

λ−,t = ζ−,t

(
1−

s∑
k=0

cN t

k!
m

(k)
X (ζe)∆

k
ζ

)2

+ (1− cN )t
(

1−
s∑

k=0

cN t

k!
m

(k)
X (ζe)∆

k
ζ

)
+O≺(N−α/4−ε).

Note that for any integer k ≥ 0, it can be easily verified that w.h.p., |m(k)
X (ζe) − m(k)

X (ζ̂e)| ≤ N−50s,

by chooinsg Kζ > 0 large enough. This means that we can replace m
(k)
X (ζe) with m

(k)
X (ζ̂e). Through an

elementary calculation, we have

λ−,t = λshift−
(

2cN t
(
1− cN tEmX(ζ̂e)

)
ζe − cN t2(1− cN )

)
∆m(ζ̂e)+ZOTζ∆ζ+P(∆ζ , {∆(k)

m (ζ̂e)}k≥0).

where λshift :=
(
1−cN tEmX(ζ̂e)

)2
ζe +(1−cN )t

(
1−cN tEmX(ζ̂e)

)
, and we denote by ZOTζ the collection

of zero-th order terms, i.e.,

ZOTζ :=
(
1− cN tEmX(ζ̂e)

)(
1− cN tEmX(ζ̂e)− 2cN tζeEm′X(ζ̂e)

)
− cN (1− cN )t2Em′X(ζ̂e), (44)

and P(∆ζ , {∆(k)
m (ζ̂e)}k≥1) collects all the high order terms. We need to bound the last two terms. It

can be easily obtained by prior bounds in Lemma 3.4 that P(∆ζ , {∆(k)
m (ζ̂e)}k≥0) = Op(N−α/4−(4−α)/8).

Moreover, due to Remark 6 below, we find that ZOTζ = O(N−α/4−(4−α)/8).

The following two propositions complete the proof.
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Proposition 3.5. Let σα be as in Theorem 2.12. We have

2cN
(
1− cN tEmX(ζ̂e)

)
ζe ·

(
t∆m(ζ̂e)

σα

)
⇒ N (0, 1).

Proposition 3.6. We have

λshift = λmp
− −

cN1−α/2(1−√cN )2

c
(α−2)/4
N

Γ
(α

2
+ 1
)

+ o(N1−α/2).

We shall prove the above propositions in the next subsections.

Proof of Lemma 3.4. Using Lemma 3.2 (ii), we can obtain that ∆m(z) = mX(z)−m
(t)
mp(z) +E(m

(t)
mp(z)−

mX(z)) ≺ N−β . The bound for ∆
(k)
m (z) follows by a simple application of Cauchy integral formula.

In order to bound ∆ζ , we first observe that

ζe − ζ̄−,t = E
[
(ζ−,t − ζ̄−,t) · 1ΩΨ

]
− ζ̄−,t · P(ΩcΨ) ≤ N−β/2t2. (45)

where the last step follows from Lemmas 2.3 and 3.2 (iii). Therefore, by Lemma 3.2 (iii) again, we can
get the desired bound for ∆ζ .

Next we consider Var(∆m(z)). We first let Fk be the σ-field generated by the first k columns
of X. Then we define D+

k := E
[
M−1(TrG(X, z) − TrG(X(k), z))

∣∣Fk], D−k := E
[
M−1(TrG(X(k), z) −

TrG(X, z))
∣∣Fk−1

]
, and Dk := D+

k +D−k . By the Efron-Stein inequality, we have

Var(mX(z)) =

N∑
i=1

E(|Di|2) ≤ 2

N∑
i=1

E
(
|D+

i |
2
)

+ E
(
|D−i |

2
)
.

Using the resolvent expansion, we can obtain

E
(
|D+

k |
2
)
≤ 1

M2
E
[∣∣∣ x>k G

2(X(k), z)xk
1 + x>k G(X(k), z)xk

∣∣∣2 · 1|z−λM (S(X(k)))|≥ct2
]

+N−D .
N ε

N2t4
,

where in the first step, we used Lemma 3.2 (i) to derive, with high probability, that for |z − ζe| ≤ τt2

with sufficiently small τ > 0, there exists some sufficiently small c > 0,

|z − λM (S(X(k)))| ≥ |ζ−,t − λM (S(X))| − |z − ζe| − |∆ζ |
− |λM (S(X))− (1− t)λmp

− | − |λM (S(X(k)))− (1− t)λmp
− | ≥ ct2, (46)

which gives P(|z−λM (S(X(k)))| ≥ ct2) < N−D for arbitrary large D > 0, and z has non-zero imaginary
part which yields deterministic upper bound for the random variable. Similarly, we have E

(
|D−k |2

)
.

N ε/(N2t4). This establishes the bound for Var(∆m(z)).

The bound for Var(∆
(k)
m (z)) follows by an application of Cauchy integral formula. Note that, since the

contour of the Cauchy integral will cross real line, the integrand may not be well defined deterministically
due to the possible singularity (although with tiny probability) of the Green function. Hence, we will
need to cut off the part of the integral when the imaginary part of the variable is small. To elucidate the

procedure, we will outline how to do the cutoff for the Cauchy integral representation of E(m
(k)
X (z)) only.

The one for variance can be done similarly. Consider z that satisfies |z−ζe| ≤ τt2/2 and Im z ≥ N−100Kζ ,
we first define Ωz := {|z − λM (S(X))| ≥ ct2}. A similar argument as (46) leads to P(Ωcz) ≤ N−D for
arbitrary large D > 0. Then we may choose a contour ωz := {z′ : |z′ − z| = τt2/10} with sufficiently
small τ , and set w := {z′ : |Im z′| ≥ N−100Kζ}. Then we obtain

E(m
(k)
X (z)) = E(m

(k)
X (z) · 1Ωz ) + E(m

(k)
X (z) · 1Ωcz

) =
k!

2πi
E
[ ∮

ω

mX(a)

(a− z)k+1
da · 1Ωz

]
+N−D
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=
k!

2πi

(
E
[ ∮

ω∩w

mX(a)

(a− z)k+1
da · 1Ωz

]
+ E

[ ∮
ω∩wc

mX(a)

(a− z)k+1
da · 1Ωz

])
+N−D

=
k!

2πi

(
E
[ ∮

ω∩w

mX(a)

(a− z)k+1
da
]

+ E
[ ∮

ω∩wc

mX(a)

(a− z)k+1
da · 1Ωz

])
+N−D

=
k!

2πi
E
[ ∮

ω∩w

mX(a)

(a− z)k+1
da
]

+O(N−50Kζ ) +N−D. (47)

For the remaining term, the effective imaginary part of a within ω ∩w allows us to interchange E with
the contour integral. Then, the upper bound for E(mX(a)) can be directly applied to estimate this term.

Using the same cutoff of the contours, the bound for Var(∆
(k)
m (z)) is obtained through a double integral

representation together with the Cauchy-Schwarz inequality. We omit further details for brevity.
Lastly, we shall bound Var(∆ζ). Since (λM (S(X))− ζ−,t) ·1ΩΨ ∼ t2 ·1ΩΨ and ∆ζ ≺ N−β/2t2, on the

event ΩΨ, λM (S(X)) − ζe = λM (S(X)) − ζ−,t + ∆ζ ∼ t2 with high probability. Using Lemma 2.2, the
bound in the above display also implies that on the event ΩΨ,

m
(k)
X (ζe) ∼ t−2k+1, k ≥ 1. (48)

Recall that Φ′t(ζ−,t) = 0, which reads

(1− cN tmX(ζ−,t))
2 − 2cN tm

′
X(ζ−,t) · ζ−,t (1− cN tmX(ζ−,t))− cN (1− cN )t2m′X(ζ−,t) = 0. (49)

Replacing ζ−,t and mX(ζ−,t) with ζe and E[mX(ζ̂e)], as in the proof of Theorem 2.12, it follows from
(49) that

ZOTζ + FOTζ + Pζ(∆ζ , {∆(k)
m }k≥0) = 0, (50)

where the term ZOTζ is defined as in (44),

FOTζ :=
(
2c2N t

2ζeEm′X(ζ̂e)− 2fm
)
∆m(ζ̂e)−

(
cN (1− cN )t2 + 2fmζe

)
∆(1)
m (ζ̂e)

−
(
4fmEm′X(ζ̂e) + cN (1− cN )t2Em(2)

X (ζ̂e) + 2c2N t
2ζe(Em′X(ζ̂e))

2 + 2fmζeEm(2)
X (ζ̂e)

)
∆ζ

with fm := cN t
(
1−cN tEmX(ζ̂e)

)
, and Pζ(∆ζ ,∆

(k)
m ) is the collection of high order terms. Note that fm ∼ t

and Pζ(∆ζ ,∆
(k)
m ) is a polynomial in ∆ζ and ∆

(k)
m ’s, containing monomials of order no smaller than 2.

Hence, by Cauchy Schwarz and bounds in (42), one can get the following bounds

Var
(
P(∆ζ ,∆

(k)
m (ζ̂e))1ΩΨ

)
. N−1/2−β/4

√
Var(∆ζ1ΩΨ

) +N−β/4Var(∆ζ1ΩΨ
) +N−D, (51)

E
(
P(∆ζ ,∆

(k)
m (ζ̂e))1ΩΨ

)
. N−1/2+ε/2t−3

√
Var(∆ζ1ΩΨ) + t−2Var(∆ζ1ΩΨ) +N−D. (52)

Using (48), we can see that the leading order term of the coefficient of ∆ζ in FOTζ is −2fmζeE(m
(2)
X (ζ̂e)) ∼

t−2. Therefore, we can derive from (50) that

C1(t)∆ζ = C2(t)∆m(ζ̂e) + C3(t)∆(1)
m (ζ̂e) +

ZOTζ + Pζ(∆ζ ,∆
(k)
m (ζ̂e))

2fmζeEm(2)
X (ζ̂e)

, (53)

where Ci(t), i = 1, 2, 3 are deterministic quantities satisfying C1(t) = 1 + O(t), C2(t) = O(t3), and
C3(t) = O(t3). Multiplying 1ΩΨ

at both sides and then compute the variance:

Var(∆ζ1ΩΨ) . t6Var(∆m(ζ̂e)) + t6Var(∆(1)
m (ζ̂e)) + t4Var

(
Pζ(∆ζ ,∆

(k)
m (ζ̂e))

)
. N−1+ε +N−1/2−β/4

√
Var(∆ζ1ΩΨ), (54)
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Solving the above inequality for Var(∆ζ1ΩΨ
) gives Var(∆ζ1ΩΨ

) . N−1+ε, which completes the proof of
Lemma 3.4.

Remark 6 (Bound ZOTζ). We start with (53). Multiplying 1ΩΨ
at both sides and then taking expectation,

we have (ZOTζ + E[Pζ(∆ζ ,∆
(k)
m (ζ̂e)) · 1ΩΨ ])/(2fmζeEm(2)

X (ζ̂e)) +O(N−D) = 0. Using (52) together with
the variance bound for ∆ζ1ΩΨ in Lemma 3.4, we can obtain that ZOTζ = O(N−1+εt−3). By the fact
t� N (α−4)/32, it follows that ZOTζ = O(N−α/4−(4−α)/8).

3.3 Proof of Proposition 3.5

Proposition 3.5 follows from Lemma 3.3 and the following theorem together with some simple algebraic
calculation. Recall that ∆m(ζ̂e) = mX(ζ̂e)− E(mX(ζ̂e)).
Theorem 3.7 (CLT of the linear eigenvalue statistics of S(X)). For any 2 < α < 4,

Nα/4t∆m(ζ̂e)

σm
⇒ N (0, 1),

where

σ2
m := ct2cN

∫ ∞
0

∫ ∞
0

∂z∂z′
{e−s−s′−scNm(t)

mp (z)−s′cNm(t)
mp (z′)

ss′

×
((
sm(t)

mp(z) + s′m(t)
mp(z′)

)α/2 − (sm(t)
mp(z)

)α/2 − (s′m(t)
mp(z′)

)α/2)}∣∣∣
z=z′=ζ̂e

dsds′.

To prove Theorem 3.7, we will work on the truncated matrix X̃ = (x̃ij) with x̃ij = xij1√N |xij |≤Nϑ

and ϑ = 1/4 + 1/α + εϑ such that N−αεϑ � t and εϑ < (3α − 5)/(4α). It will become clear from the
following lemma that the fluctuations of mX and mX̃ are asymptotically the same.

Lemma 3.8. We have Nα/4t
(
mX(ζ̂e)−mX̃(ζ̂e)

)
= op(1).

Proof. This lemma simply follows from the rank inequality and Bennett’s inequality together with Lemma
3.2 (i).

Proof of Theorem 3.7. By Lemma 3.8, it is enough to consider the convergence (in distribution) of

MN (X̃) := Nα/4t
(
mX̃(ζ̂e)−EmX̃(ζ̂e)

)
. We will use the Martingale approach. To this end, we define Fk

as the sigma-algebra generated by the first k columns of X̃. Denoting conditional expectation w.r.t. Fk
by Ek, we obtain the following martingale difference decomposition of MN (X̃)

MN (X̃) =

N∑
k=1

Nα/4t(Ek − Ek−1)
(
mX̃(ζ̂e)−mX̃(k)(ζ̂e)

)
.

Our aim is to show that MN (X̃) converges in distribution to a Gaussian distribution N (0, σ2
m) via the

martingale CLT.

Theorem 3.9 (Martingale CLT, Theorem A.3 of [15]). Let (Fk)k≥0 be a filtration such that F0 = {∅,Ω}
and let (Wk)k≥0 be a square-integrable complex-valued martingale starting at zero w.r.t. this filtration.
For k ≥ 1, we define the random variables Yk :=Wk −Wk−1, vk := Ek[|Yk|2], τk := Ek[Y 2

k ], and we also
define v(N) :=

∑
k≥1 vk, τ(N) :=

∑
k≥1 τk,

∑
k≥1 E[|Y 2

k |1|Yk|≥ε]. Suppose that for some constants v ≥ 0,

τ ∈ C, and for each ε > 0, v(N)
P→ v, τ(N)

P→ τ , L(ε,N) → 0. Then, the martingale WN converges in
distribution to a centered complex Gaussian variable Z such that E(|Z|2) = v and E(Z2) = τ as N →∞.

We want to apply Theorem 3.9 with setting WN =MN (X̃). Using the resolvent identity,

MN (X̃) =

N∑
k=1

Yk(ζ̂e) :=

N∑
k=1

t

N1−α/4 (Ek − Ek−1)
x̃>k (G(X̃(k), ζ̂e))

2x̃k

1 + x̃>k G(X̃(k), ζ̂e)x̃k
.
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First note that |Yk(ζ̂e)| . N−1+α/4t−1 with high probability. We also have the deterministic upper bound

for Yk(ζ̂e) since ζ̂e possesses effective imaginary part. Combining these two facts, we can verify that the
L(ε,N) goes to 0.

In order to conclude the proof via Theorem 3.9, we need to check convergences of v(N) and τ(N).
This follows from Propositions 3.10 and 3.11 below.

Proposition 3.10. Let

Ỹk(ζ) :=
t

N1−α/4 (Ek − Ek−1)fk(ζ) :=
t

N1−α/4 (Ek − Ek−1)
x̃>k (G(X̃(k), ζ))2

diagx̃k

1 + x̃>k (G(X̃(k), ζ))diagx̃k
.

Then there exists some constant τ , such that for any ζ, ζ ′ ∈ Ξ(τ) = {ξ ∈ C : |ξ − ζ̂e| ≤ τt2, |Im ξ| ≥
N−100}, the summation

∑N
k=1 Ek−1[Yk(ζ)Yk(ζ ′)]− Ek−1[Ỹk(ζ)Ỹk(ζ ′)] converges in probability to 0.

Proof. The proof is similar to the counterpart in [15]; see the supplementary material [11] for details.

Proposition 3.11. For any k ∈ [N ], there exists some constant τ , such that for any z, z′ ∈ {ζ ∈ C :

|ζ − ζ̂e| ≤ τt2, |Im ζ| ≥ N−100},

N−1+α/2t2Ek−1

(
(Ek − Ek−1)fk(z)(Ek − Ek−1)fk(z′)

)
K(z, z′)

P→ 1,

as N →∞. The kernel K(z, z′) is defined as

K(z, z′) := cN1−α/2t2cN

∫ ∞
0

∫ ∞
0

∂z∂z′
{e−s−s′−scNm(t)

mp (z)−s′cNm(t)
mp (z′)

ss′

×
((
sm(t)

mp(z) + s′m(t)
mp(z′)

)α/2 − (sm(t)
mp(z)

)α/2 − (s′m(t)
mp(z′)

)α/2)}
dsds′.

Before giving the proof of Proposition 3.11, let us introduce the parameter σN :=
√
NEx̃2

ij and

Lemma 3.12 below. Note that

E
(
Nx̃2

ij1
√
Nxij>Nϑ

)
=

∫ ∞
N2ϑ

P(|
√
Nxij |2 > x)dx ∼ Nϑ(2−α), (55)

which gives σ2
N − (1− t) = O(Nϑ(2−α)). The following lemma collects some useful properties of x̃ij and

the expansion for the characteristic function of xij .
Lemma 3.12. Then there exists constant C > 0, such that
(i) x̃ij’s are i.i.d. centered, with variance σ2

N/N , third moment bound N3/2E[|x̃ij |3] ≤ CNϑ(3−α)+ , and
fourth moment bound N2E[|x̃ij |4] ≤ CNϑ(4−α),

(ii) for any λ ∈ C such that Imλ ≤ 0,

φN (λ) := E
(
e−iλ|xij |2

)
= 1− i(1− t)λ

N
+ c

(iλ)
α
2

N
α
2

+ εN (λ), and εN (λ) = O
( |λ|(α+%)/2

N (α+%)/2
∨ |λ|

2

N2

)
.

Proof. The proof of (i) is elementary. To prove (ii), we observe

1− φN (λ) =

∫ ∞
0

(
exp(−iλu/N)− 1

)
dF c(u) =

iλ

N

∫ ∞
0

exp(−iλu/N)F c(u)du,

where F be the distribution function of Nx2
ij and let F c = 1− F . Since

∫∞
0
F c(u)du = 1− t, we notice

1− φN (λ) =
iλ(1− t)

N
+

iλ

N

∫ ∞
0

(
exp(−iλu/N)− 1

)
F c(u)du.

The estimate (ii) can be obtained using the tail density assumption on
√
Nyij (cf. Assumption 1 (i)).
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Proof of Proposition 3.11. Let f̂k be defined as fk, but with the matrix X̃ replaced by a matrix X̂. The
columns X̂i of X̂ are the same as those of X̃ if i ≤ k, but are independent random vectors with the same
distribution as the columns of X̃ if i > k. It is still valid to use the notation Ek since X̃ and X̂ share the
same first k columns. By the following elementary identity

Ek−1

(
(Ek − Ek−1)(fk(z))(Ek − Ek−1)(fk(z′))

)
= Ek

(
Ex̃k(fk(z)f̂k(z′))

)
−
(
EkEx̃kfk(z)

)(
EkEx̃k f̂k(z′)

)
, (56)

it suffices to study the approximation for Ex̃kfk(z) and Ex̃kfk(z)f̂k(z′). In the sequel, we write fk = fk(z),

f̂ ′k = f̂k(z′), Gk = G(X̃(k), z) and G′k = G(X̃(k), z′) for simplicity. By a minor process argument, for

any D > 0, there exists constant Ck > 0 such that |λM (S(X̃(k)))− ζ̂e| ≥ Ckt2, with probability at least
1−N−D. This implies that there exists some constant Ck > 0 such that for any arbitrary large D > 0,

P(Ω̃k = {λM (S(X̃(k)))− ζ̄−,t ≥ Ckt2}) ≥ 1−N−D.

Then it is readily seen that Re [G(X̃(k), z)]jj ·1Ω̃k
≥ 0 for any z ∈ {|z− ζ̄−,t| ≤ Ckt2/10, |Im z| ≥ N−100}.

Since Ω̃k is independent of x̃k, we can write Ex̃k(fk) = Ex̃k(fk)1Ω̃k
+ Ex̃k(fk)1Ω̃ck

. Using the facts that

|x̃jk| ≤ N1/α+1/4+εϑ and |[Gk]jj | ≤ |Im z|−1 ≤ N101, we have for some large constant K > 0 such that
|Ex̃k(fk)1Ω̃ck

| ≤ NK1Ω̃ck
.

Next, we will mainly focus on the estimation for Ex̃k(fk)1Ω̃k
. In the sequel, we omit the indicate

function 1Ω̃k
from the display for simplicity, and keep in mind that all the estimates are done on the

event Ω̃k. Using the identity that for w with Rew > 0, w−1 =
∫∞

0
e−swds , we have

Ex̃kfk = Ex̃k
(∫ ∞

0

∑
j

x̃2
jk[G2

k]jje
−s
(

1+
∑
j x̃

2
jk[Gk]jj

)
ds
)

= −
∫ ∞

0

e−s

s
∂z

{
Ex̃k

(
e−s

∑
j x̃

2
jk[Gk]jj

)}
ds.

Recall φ̃N and φN in Lemma 3.12. We have

Ex̃kfk = −
∫ ∞

0

e−s

s
∂z

{∏
j

φN
(
− is[Gk]jj

)}
ds+ Diff,

where Diff :=
∫∞

0
e−s

s ∂z

{∏
j φN

(
− is[Gk]jj

)
−
∏
j φ̃N

(
− is[Gk]jj

)}
ds. Note by the definition of x̃jk’s

for any j ∈ [N ], the following estimate holds uniformly for all λ with Imλ ≤ 0,∣∣φN (λ)− φ̃N (λ)
∣∣ =

∣∣∣E[(e−iλ|xij |2 − 1
)
· 1√N |xij |>Nϑ

]∣∣∣ ≤ 2P
(√
N |xij | > Nϑ

)
. N−αϑ.

Therefore, by a Cauchy integral argument with contour radius equals to ct2 for some sufficiently small
c > 0, we have for sufficiently large K,∣∣∣ ∫ ∞

N−K

e−s

s
∂z

{∏
j

φN
(
− is[Gk]jj

)
−
∏
j

φ̃N
(
− is[Gk]jj

)}
ds
∣∣∣ . t−2N−αϑ

∫ ∞
N−K

e−s

s
ds . N1−α/2−ε.

With the prescribe K, we also have

∣∣∣ ∫ N−K

0

e−s

s
∂z

{∏
j

φ̃N
(
− is[Gk]jj

)}
ds
∣∣∣ =

∣∣∣Ex̃k(∫ N−K

0

∑
j

x̃2
jk[G2

k]jje
−s
(

1+
∑
j x̃

2
jk[Gk]jj

)
ds
)∣∣∣ . N−K/2,

and similar estimate holds if we replace φ̃N by φN . Combining the above two displays, we can obtain that

Ex̃kfk = −
∫ ∞

0

e−s

s
∂z

{∏
j

(
1 +

1− t
N

uj(z, s)
)}

ds+O≺(N1−α/2−ε),
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where

uj(z, s) =
N

1− t

(
φ
(
− is[Gk]jj

)
− 1
)

= −s[Gk]jj + c
(s[Gk]jj)

α
2

N
α−2

2 (1− t)
+

N

1− t
εN (−is[Gk]jj).

We introduce the approximation K1(z, s) for the integrand as follows:

K1(z, s) :=
e−s−s(1−t)TrGk/N

s

(
1 +

c

Nα/2

M∑
j=1

(
s[Gk]jj

)α/2)
.

Then our goal is to show on the event Ω̃k∫ ∞
0

∂zδ(z, s)ds . N1−α/2−ε, (57)

where δ(z, s) = e−s

s

∏
j

(
1 + 1−t

N uj(z, s)
)
−K(z, s), and ε > 0 is a small constant. By the Cauchy integral

formula, we have
∣∣∣ ∫∞0 ∂zδ(z, s)ds

∣∣∣ . t−2
∫∞

0
|δ(zs, s)|ds, where zs is the maximizer of |δ(z, s)| on the

contour {z′ : |z′ − z| = Ckt
2/50}. To estimate the RHS of this inequality, we divide it into two parts,

1

t2

∫ ∞
0

|δ(zs, s)|ds =
1

t2

∫ Nς

0

|δ(zs, s)|ds+
1

t2

∫ ∞
Nς
|δ(zs, s)|ds = I1 + I2,

with ς being chosen later . Using the fact that [Gk]jj . t−2 on the event Ω̃k, we can obtain that

I2 .
1

t2+α

∫ ∞
Nς

sα/2−1e−sds ≤ e−N
ς/3.

For I1, we further decompose it into three parts,

I1 =
1

t2

∫ Nς

0

∣∣∣e−s
s

(∏
j

(
1 +

1− t
N

uj(zs, s)
)
− eσ

2
N/N

∑
j uj(zs,s)

)∣∣∣ds
+

1

t2

∫ Nς

0

∣∣∣e−s
s

(
e(1−t)/N

∑
j uj(zs,s) − e−s(1−t)TrGk/N

(
1 +

∑
j

c
(s[Gk]jj)

α
2

N
α
2

+
∑
j

εN (−is[Gk]jj)
))∣∣∣ds

+
1

t2

∫ Nς

0

∣∣∣e−s
s

(
e−s(1−t)TrGk/N

∑
j

εN (−is[Gk]jj)
)∣∣∣ds = I11 + I12 + I13.

Notice that on the event Ω̃k, Ms = maxj |uj(zs, s)|σ2
N . st−2, and Reuj(zs, s) = N(ReφN (−is[Gk]jj)−

1) ≤ 0. Then using [15, Lemma 4.5], we have on the event Ω̃k,

I11 ≤
1

t2

∫ Nς

0

e−s

s
· s

2

Nt4
es

2/(Nt4)+
∑
j Re ((1−t)uj(zs,s))/Nds .

1

Nt6

∫ Nς

0

e−sses
2/(Nt4)ds .

1

Nt6
.

By choosing ς < 1/3 (say), we can obtain that I11 . N−1t−6. Applying the simple inequality that
|ex − (1 + x)| ≤ 2|x|2 for |x| ≤ 1/2, we have

I12 .
1

t2

∫ Nς

0

e−s

s

∣∣∣∑
j

c
(s[Gk]jj)

α
2

N
α
2

+
∑
j

εN (−is[Gk]jj)
∣∣∣2ds

.
1

Nα−2t2+2α

∫ Nς

0

sα−1ds . N ςα−α+2t−2−2α . N−3(α−2)/5,
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where in the last step, we chose ς < (α− 2)/(4α). Finally, for I13, we can use Lemma 3.12 (ii) to obtain
that, I13 . N−(α−2)ϑt−2−2α . N−3(α−2)/4. Now we may conclude the proof of (57) by combining the
above estimates and possibly adjusting the constants. This gives

Ex̃k(fk) = −
∫ ∞

0

∂zK1(z, s)ds+O≺(N1−α/2−ε).

Similarly, we can obtain that

Ex̃k(fkf̂
′
k) =

∫ ∞
0

∫ ∞
0

∂z∂z′K2(z, z′, s, s′)dsds′ +O≺(N1−α/2−ε),

where

K2(z, z′, s, s′) :=
e−s−s

′−s(1−t)TrGk/N−s(1−t)TrG′k/N

ss′

(
1 +

c

Nα/2

M∑
j=1

(
s[Gk]jj + s′[G′k]jj

)α/2)
.

Notice that the estimate in Proposition 2.10 can be obtained for our G(X̃(k), z) as well in the same
manner. Suppose that max{|Dr|, |Dc|} ≤ N1−εd for some εd. Notice that εd ≥ εα by definition. Hence,
the claim now follows by (i) employing (56), then substituting σ2

N [Gk]jj(z) with mmp(z/σ2
N ) for j ∈ Tr,

and utilizing the bound [Gk]jj ≺ 1/t for j ∈ Dr with the fact t� N−εd/4; (ii) considering the estimates
σ2
N − (1 − t) = O(Nϑ(2−α)) (cf. (55)), ∂zmmp(z/σ2

N ) ∼ t−1, and ∂2
zmmp(z/σ2

N ) ∼ t−3 for z within

the specified domain. This enables us to further replace mmp(z/σ2
N ) and mmp(z/σ2

N ) with m
(t)
mp(z) and

m
(t)
mp(z′), respectively.

3.4 Proof of Proposition 3.6

Let us first define

p(z) := cN1−α/2cN

∫ ∞
0

e−s−scNm(t)
mp (z)

(
sm(t)

mp(z)
)α/2

ds,

mshift(z) :=
i( z

1−t − cN + 1)p(z)

2cNz
√

( z
1−t − λ

mp
− )(λmp

+ − z
1−t )

.

Then we have the following proposition concerning the expansion of EmX(z).
Proposition 3.13. There exists some sufficiently small constant τ > 0, such that for any z ∈ {ζ :
|ζ − ζ̄−,t| ≤ τt2, |Im ζ| ≥ N−100}, we have mshift(z) = O(t−1N1−α/2) and

EmX(z) = m(t)
mp(z) +mshift(z)−

p(z)

2cNz
+O(N1−α/2−ε(4−α)(α−2)/50). (58)

Furthermore, for any z ∈ {ζ : |ζ − ζ̄−,t| � t2, |Im ζ| ≥ N−100},

tmshift(z) =
cN1−α/2 ∫∞

0
e−s−scNmmp(λmp

− )
(
smmp(λmp

− )
)α/2

ds

2
√
cN (1−√cN )

+ o(N1−α/2). (59)

Proof. By the resolvent expansion, we have for any z ∈ {ζ : |ζ − ζ̄−,t| ≤ τt2, |Im ζ| ≥ N−100},[
G(X>, z)

]
ii

= −
(
z + zx>i G(X(i), z)xi

)−1
. (60)
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Let Q = Qdiag +Qoff with Qdiag :=
∑M

j=1 x
2
ji

[
G(X(i), z)

]
jj

and Qoff :=
∑

` 6=k xkix`i
[
G(X(i), z)

]
k`

. Then,

we can rewrite (60) as:

[
G(X>, z)

]
ii

= − 1

z(1 +Qdiag)
+

Qoff

z(1 +Qdiag)2
− Q2

off

z(1 +Qdiag)2(1 +Q)
. (61)

Taking expectation at both sides gives

E
[
G(X>, z)

]
ii

= −1

z
E
[ 1

1 +Qdiag

]
− 1

z
E
[ Q2

off

(1 +Qdiag)2(1 +Q)

]
= I1 + I2,

where the second term at the right hand side of (61) vanished due to symmetry. Notice that when Ψ(i)

is good, we have w.h.p. that

|λM (S(X(i)))− z| = |(1− t)λmp
− − ζ̄−,t| − |λM (S(X(i)))− (1− t)λmp

− | − |ζ̄−,t − z|
≥
√
cN t

2 −
√
cN t

2/4− τt2 ≥
√
cN t

2/2,

where in the last step we used the fact that |λM (S(X(i)))− (1− t)λmp
− | ≤ N−εb w.h.p., and we also chose

τ <
√
cN t

2/4. This together with the fact that Ψ(i) is good w.h.p. gives P
(
Ωi =

{
|λM (S(X(i))) − z| ≥√

cN t
2/2
})
≥ 1 − N−D. Notice that ReQdiag ≥ 0 and ReQ ≥ 0 hold on Ωi. Then for I2, with the

smallness of P(Ωci ), we have I2 = E[Q2
off1Ωi/[(1 +Qdiag)2(1 +Q)]] +O(N−D). We then bound I2 as

|I2| ≤ E|Qoff |21Ωi +O(N−D) = 2N−2E
[
TrG(X(i), z)G(X(i), z)1Ωi

]
+O(N−1) = O≺(t−4N−1).

Next, we estimate I1. Due to the smallness of P(Ωci ), we only have to do the estimation on the event
Ωi. Specially, we have I1 = −E[1Ωi/(z + zQdiag)] +O(N−D). Notice that ReQdiag ≥ 0 on the event Ωi.
Using the identity that for w with Rew > 0, w−1 =

∫∞
0
e−swds and setting w = 1 +Qdiag, we have

I1 = −1

z
E
[ ∫ ∞

0

e−s(1+Qdiag)ds · 1Ωi

]
+O(N−D) = −1

z
E
(
Exi
[ ∫ ∞

0

e−s(1+Qdiag)ds
]
· 1Ωi

)
+O(N−D)

= −1

z
E
(∫ ∞

0

e−s
∏
j

φN
(
− is

[
G(X(i), z)

]
jj

)
ds · 1Ωi

)
+O(N−D).

Then we may proceed as the estimation in the proof of Proposition 3.11 to obtain that

I1 = −1

z
E
[ 1

1 + (1− t)TrG(X(i), z)/N
· 1Ωi

]
− p(z)

z
+O(N−3(α−2)/5).

Further using the O≺(t−4N−1) bound for Var(M−1TrG(X(i), z)) and the fact TrG(X(i), z)−TrG(X, z) ≺
t−4, we arrive at

I1 = −1

z

( 1

1 + (1− t)ETrG(X, z)/N

)
− p(z)

z
+O(N−3(α−2)/5) +O≺(t−4N−1).

Collecting the estimates for I1 and I2, and then summing over i, we have

N−1ETrG(X>, z) = −1

z

( 1

1 + (1− t)ETrG(X, z)/N

)
− p(z)

z
+O(N−3(α−2)/5).

Using the simple equation TrG(X, z)−TrG(X>, z) = (N−M)/z, the above equation can be rewritten as:

cNEmX(z) = −1

z

( 1

1 + (1− t)cNEmX(z)

)
− p(z) + 1− cN

z
+O(N−3(α−2)/5). (62)
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Notice that for z = ζ̄−,t + iN−100Kζ , we have ( z
1−t + cN − 1)2 − 4cNz

1−t = cN t
2(2−t)2

(1−t)2 +O(N−90Kζ ). Then

by continuity, we may choose τ sufficiently small such that for any z ∈ {ζ : |ζ − ζ̄−,t| ≤ τt2, |Im ζ| ≥
N−100Kζ}, we have ( z

1−t + cN − 1)2 − 4cNz
1−t ∼ t

2. Having this bound, we may solve the quadric equation
(62) and then compare it with (2) to obtain that

EmX(z) = m(t)
mp(z) +mshift(z)−

p(z)

2cNz
+O(N−11(α−2)/20),

which proves (58). Using the fact that m
(t)
mp(ζ̄−,t+iN−100Kζ )−mmp(λmp

− ) ≤ t, we may further derive that

tmshift(ζ̄−,t + iN−100) =
cN1−α/2 ∫∞

0
e−s−scNmmp(λmp

− )
(
smmp(λmp

− )
)α/2

ds

2
√
cN (1−√cN )

+O(tN1−α/2).

This together with the crude bound m
(t)
mp(ζ̄−,t + iN−100Kζ )−m

(t)
mp(ζ̄−,t) = O(N−90Kζ ) proves (59), which

completes the proof of Proposition 3.13.

The following corollary is a direct consequence of Proposition 3.13.
Corollary 3.14. Let τ be chosen as in Proposition 3.13. Then for any z ∈ {ζ : |ζ−ζ̄−,t| ≤ τt2/2, |Im ζ| ≥
N−100}, we have Em(k)

X (z)− (m
(t)
mp(z))(k) = O(t−(2k+1)N1−α/2),

Proof. The claim follows from Proposition 3.13 with Cauchy integral. We omit further details.

Proof of Proposition 3.6. Replacing E[mX(ζ̂e)] by m
(t)
mp(ζ̂e) in the expression of λshift, we can obtain

λshift = Φ̄t(ζe) +
(
2cN tλ

mp
− +O(t2)

)
·
(
m(t)

mp(ζ̂e)− E[mX(ζ̂e)]
)

+O(|ζe − ζ̂e|). (63)

Expanding Φ̄t(ζe) around ζ̄−,t and using the fact that Φ̄′t(ζ̄−,t) = 0, we have that there exists ζ̃ ∈ [ζ̄−,t, ζe]

such that Φ̄t(ζe) = Φ̄t(ζ̄−,t) + Φ̄′′t (ζ̃)(ζe − ζ̄−,t)2 = λmp
− + Φ̄′′t (ζ̃)(ζe − ζ̄−,t)2. Substituting this expansion

back into (63), and using the bound in Corollary 3.14, (63) becomes

λshift = λmp
− + 2cN tλ

mp
−
(
m(t)

mp(ζ̂e)− E[mX(ζ̂e)]
)

+ Φ̄′′t (ζ̃)(ζe − ζ̄−,t)2 + o(N1−α/2).

Note by considering that ζ̃ − (1− t)λmp
− ∼ t2, it can be easily verified that Φ̄′′t (ζ̃) ∼ t−2.

By employing Corollary 3.14 along with the variance bounds for m
(k)
X (ζ̂e) in Lemma 3.4, we can

conclude that

∆̄(k)
m (ζ̄−,t) := m

(k)
X (ζ̄−,t)− (m(t)

mp(ζ̄−,t))
(k) = Op(N−1/2+ε/2t−2−k +N1−α/2t−2k−1).

With the above probabilistic bounds in place, we may now proceed to follow the expansion detailed in the

proof of Lemma 3.4, but this time substitute ζe with ζ̄−,t and E(m
(k)
X (ζ̂e)) with m̄

(k)
X (ζ̄−,t) (cf. (49)-(54)).

It becomes evident that the ZOTζ therein vanishes due to the fact that Φ̄′t(ζ̄−,t) = 0. This eventually
leads to ∆̄ζ := ζ−,t − ζ̄−,t = Op(N−1/2+ε/2 +N1−α/2). Therefore, with ∆ζ = Op(N−1/2+ε/2t6), we have

Φ̄′′t (ζ̃)(ζe − ζ̄−,t)2 ∼ t−2(∆̄ζ −∆ζ)
2 = o(N1−α/2). Consequently, we arrive at

λshift = λmp
− + 2cN tλ

mp
−
(
m(t)

mp(ζ̂e)− EmX(ζ̂e)
)

+ o(N1−α/2).

Recalling from (45) that ζ̄−,t − ζe ≺ N−β/2t2, we can deduce that ζ̄−,t − ζ̂e ≺ N−β/2t2. The claim now
follows by (59) in Proposition 3.13 and the fact mmp(λmp

− ) = (
√
cN − cN )−1.

4 Beyond Gaussian divisible model

In this section, we present three Green function function comparison results, as we mentioned in the
Section 1. Their proofs will be postponed to the next section. Recall the notations in (14).
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4.1 Entry-wise bound

We first introduce the following shorthand notation: for any a, b ∈ [M ] and u, v ∈ [N ],

Xab = Xab(Ψ) :=

{
1 if a or b ∈ Tr,
t2 if a ∈ Dr, b ∈ Dr

, Yuv = Yuv(Ψ) :=

{
1 if u or v ∈ Tc,
t2 if u ∈ Dc, v ∈ Dc

,

Zau = Zau(Ψ) :=

{
1 if a ∈ Tr or u ∈ Tc
t2 if a ∈ Dr, u ∈ Dc

.

Proposition 4.1 (Entry-wise bound). Recall D(ε1, ε2, ε3) defined in (22). Let D≤ = {z = E + iη ∈
D(ε1, ε2, ε3) : η ≤ N−ε}. Set 10εa ≤ ε1 ≤ εb/500, and set ε2, ε3 sufficiently small, and 3ε1 < ε ≤ εb/100.
Suppose that Ψ is good. Let PΨ be the probability conditioned on the event that the (ψij) matrix is a given
Ψ. Suppose that Ψ is good (cf. (29)). Then for each δ > 0 and D > 0, there exists a large constant C > 0
such that

PΨ

(
sup

0≤γ≤1
sup
z∈D≤

sup
a,b∈[M ]

|Xab[Gγ(z)]ab| ∨ sup
0≤γ≤1

sup
z∈D≤

sup
u,v∈[N ]

|Yuv[Gγ(z)]uv|

∨ sup
0≤γ≤1

sup
z∈D≤

sup
a∈[M ],u∈[N ]

|Zau[Gγ(z)Y γ ]au| ≥ Nδ
)
≤ CN−D,

The proof of Proposition 4.1 follows a similar approach to the one demonstrated in [4, Proposition
3.17]. It relies on the entry-wise bounds for the Green functions of Y 0 as provided in Theorem 2.8, which
serve as an input for the subsequent comparison theorem. We defer the proof to Section 5.2.
Theorem 4.2. Let F : R→ R be a function such that

sup
0≤µ≤d

F (µ)(x) ≤ (|x|+ 1)C0 , sup
0≤µ≤d
|x|≤2N2

F (µ)(x) ≤ NC0 ,

for some real number C0, d > 0. For any 0 − 1 matrix Ψ and complex number z, we define for any
a, b ∈ [M ] and u, v ∈ [N ],

I0,ab = I0,ab(Ψ, z) := max
0≤µ≤d

sup
0≤γ≤1

EΨ

(∣∣F (µ)(XabIm [Gγ(z)]ab)
∣∣),

I1,uv = I1,uv(Ψ, z) := max
0≤µ≤d

sup
0≤γ≤1

EΨ

(∣∣F (µ)(YuvIm [Gγ(z)]uv)
∣∣),

I2,au = I2,au(Ψ, z) := max
0≤µ≤d

sup
0≤γ≤1

EΨ

(∣∣F (µ)(ZauIm [Gγ(z)Y γ ]au)
∣∣),

and Ω = Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωw, Q0 = Q0(ε, z) := 1− PΨ

(
Ω
)

with

Ω0 = Ω0(ε, z) :=
{

sup
a,b∈[M ]
0≤γ≤1

|Xab[Gγ(z)]ab| ≤ Nε
}
,Ω1 = Ω1(ε, z) :=

{
sup

u,v∈[N ]
0≤γ≤1

|Yuv[Gγ(z)]uv| ≤ Nε
}
,

Ω2 = Ω2(ε, z) :=
{

sup
a∈[M ],u∈[N ]

0≤γ≤1

|Zau[Gγ(z)Y γ ]au| ≤ Nε
}
,Ωw = Ωw(ε) :=

{
sup

i∈[M ],j∈[N ]

|wij | ≤ N−1/2+εt
}
.

Suppose that Ψ is good. There exist sufficiently small positive constants ε ≤ εb/100 and ω, and a large
constant C > 0 such that for

(#1,#2,#3) ∈ {(XabIm [Gγ(z)]ab, XabIm [G0(z)]ab, I0,ab),

(YuvIm [Gγ(z)]uv, YuvIm [G0(z)]uv, I1,uv),

(ZauIm [Gγ(z)Y γ ]au, ZauIm [G0(z)Y 0]au, I2,au)},
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we have

sup
0≤γ≤1

∣∣EΨ

(
F (#1)

)
− EΨ

(
F (#2)

)∣∣ < CN−ω(#3 + 1) + CQ0N
C+C0 , (64)

for any a, b ∈ [M ] and u, v ∈ [N ]. The same estimates hold if Im ’s are replaced by Re ’s.

4.2 Average local law

In this section, we write mγ(z) = mY γ (z), Gγ(z) = G(Y γ , z), and Ḡγ(z) = G(Y γ , z̄) for simplicity. Let
zt := λ−,t + E + iη. Then we have the following theorem.
Theorem 4.3. Suppose that Ψ is good. Let us define zt := λ−,t + E + iη. We assume that η ∈
[N−

2
3−ε, N−

2
3 ], E ∈ [−N−ε1 , N− 2

3 +ε] for a sufficiently small ε > 0. Then there exists a constant δ0 > 0
such that for all integer p ≥ 3,

sup
0≤γ≤1

EΨ

(∣∣Nη(Immγ(zt)− Im m̃0(zt)
)∣∣2p) ≤ (1 + o(1))EΨ

(∣∣Nη(Imm0(zt)− Im m̃0(zt)
)∣∣2p)+N−δ0p,

where m̃0(z) = mX+t1/2W̃ (z). Here W̃ is an i.i.d. copy of W and it is also independent of X. Further,
the same estimate holds if Im ’s are replaced by Re ’s.

The above comparison inequality directly leads to the following theorem, which is crucial for the
rigidity estimate for the λM (S(Y )), serving as a key component in proving the universality result.
Theorem 4.4 (Rigidity estimate). Suppose ΩΨ holds. Then, with high probability,

|λM (S(Y ))− λ−,t| ≤ N−2/3+ε.

Proof. By Markov’s inequality, Theorem 4.3 and the following local law for m0

|m0(λ−,t + E + iη)−mt(λ−,t + E + iη)| ≺


1
Nη , E ≥ 0,

1
N(|E|+η) + 1

(Nη)2
√
|E|+η

, E ≤ 0,
(65)

we can obtain (65) with m0 replaced by m1 and further for the case E ≤ 0 the following

Imm1(λ−,t + E + iη)− Immt(λ−,t + E + iη) ≺ 1

N(|E|+ η)
+

1

(Nη)2
√
|E|+ η

+
1

N1+δ0/2η
. (66)

We remark here that the local law in (65) has been proved in [22] around the right edge for the
deformed rectangular matrices, under the assumption that the original rectangular matrices satisfy the
η∗-regularity. The argument can be adapted to our model, but around the left edge, again with the
η∗-regularity as the input. The derivation is almost the same, and thus we do not reproduce it here.

Further, similarly to Lemma 2.6, we can prove |λM (S(Vt))− λmp
− | ≺ N−2εb and |λM (S(Y ))− λmp

− | ≺
N−2εb . By (65), and the crude lower bound on λM (S(Vt)) implied by [61], we also have |λM (S(Vt)) −
λ−,t| ≺ N−

2
3 +ε. Hence, we have

|λM (S(Y ))− λ−,t| ≺ N−2εb . (67)

With the aid of the m1 analogue of (65), (66) and (67), the remaining reasoning is routine and thus
we omit it; see the proof of Theorem 1.4 in [36], for instance.

4.3 Green function comparison for edge universality

Theorem 4.5 (Green function comparison). Let F : R→ R be a function whose derivatives satisfy

max
x
|Fα(x)|(|x|+ 1)−C1 ≤ C1, α = 1, · · · , d
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for some constant C1 > 0 and sufficiently large integer d > 0. Let Ψ be good. Then there exist ε0 > 0,
N0 ∈ N and δ1 > 0 depending on εa such that for any ε < ε0, N ≥ N0 and real numbers E,E1 and E2

satisfying |E|, |E1|, |E2| ≤ N−2/3+ε, η0 = N−2/3−ε, we have

∣∣∣EΨ

[
F
(
N

∫ E2

E1

Imm1(λ−,t + y + iη0) dy
)]
− EΨ

[
F
(
N

∫ E2

E1

Imm0(λ−,t + y + iη0) dy
)]∣∣∣ ≤ CN−δ1 ,

(68)

for some constant C > 0, and in the case α = 8/3, (68) holds with λ−,t replaced by λshift.
Employing the above comparison inequality along with the rigidity estimate int Theorem 4.4, we can

deduce the following universality result around the random edge λ−,t (and deterministic edge λshift if
α = 8/3), whose proof will be stated in the supplementary material [11].
Corollary 4.6. For all s ∈ R, we have

lim
N→∞

P
(
N2/3(λM (S(Vt))− λ−,t) ≤ s

)
= lim
N→∞

P
(
N2/3(λM (S(Y ))− λ−,t) ≤ s

)
. (69)

Moreover, if α = 8/3, we have

lim
N→∞

P
(
N2/3(λM (S(Vt))− λshift) ≤ s

)
= lim
N→∞

P
(
N2/3(λM (S(Y ))− λshift) ≤ s

)
. (70)

Now we can prove our main theorem: Theorem 1.1.

Proof of Theorem 1.1. The conclusions (i)-(iii) in Theorem 1.1 follows from (69) in Corollary 4.6 and
Theorem 2.12. To prove the critical case when α = 8/3, i.e., (iv), from (37) in Theorem 2.11, it is easy to
show that the distribution of λ−,t is asymptotically independent of the fluctuation of λM

(
S(Vt))− λ−,t

since the former is a function of X only. It can be shown by a standard characteristic function argument
that for any s ∈ R,

lim
N→∞

P
(
γNM

2/3(λM
(
S(Vt))− λshift

)
≤ s
)

= lim
N→∞

P
(
M2/3(µGOE

M + 2 + γNXα) ≤ s
)
.

where in the RHS Xα is independent of GOE. Then further, together with the comparison (70) we
conclude (iv). Hence, we complete the proof of Theorem 1.1.

5 Proofs for the Green function comparisons

In this section, we will mainly prove the Green function comparisons stated in the last section. We will
show the details for Theorems 4.2 and 4.3 only. The proof of 4.5 is similar to 4.3, and thus will only be
discussed briefly here and the details are stated in the supplementary material [11].

5.1 Some further notations

Let us introduce some additional notations. We denote by E(ij) the standard basis for RM×N , i.e.,

[E(ij)]ab := δiaδjb. Replacement matrix notation: For any A ∈ RM×N , the replacement matrix Aλ(ij) =

A(ij)(λ) ∈ RM×N is defined as,

[
A(ij)(λ)

]
ab

:=

{
λ if (i, j) = (a, b)

Aab if (i, j) 6= (a, b)
, a ∈ [M ], b ∈ [N ]. (71)

Let Gγ,λ(ij)(z) := (S(Y γ,λ(ij) )− z)−1 be the resolvent of S(Y γ,λ(ij) ) with Y γ,λ(ij) = (Y γ)(ij)(λ). We define

dij(γ,wij) := γ(1− χij)aij + χijbij + (1− γ2)1/2t1/2wji,

eij(γ,wij) := cij + (1− γ2)1/2t1/2wij , i ∈ [M ], j ∈ [N ]. (72)
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In the sequel, for brevity, we also write
∑

i,j =
∑M

i=1

∑N
j=1.

5.2 Proof of Proposition 4.1

Let us prove Proposition 4.1 assuming that Theorem 4.2 holds. The proof of Theorem 4.2 is deferred to
the next subsection. For δ > 0 and z = E + iη ∈ D(ε1, ε2, ε3) (cf. (22)), we define

P0(δ, z,Ψ) := PΨ

(
sup

0≤γ≤1
sup

a,b∈[M ]

|z1/2Xab[G
γ(z)]ab| > Nδ

)
,

P1(δ, z,Ψ) := PΨ

(
sup

0≤γ≤1
sup

u,v∈[N ]

|z1/2Yuv[Gγ(z)]uv| > Nδ
)
,

P2(δ, z,Ψ) := PΨ

(
sup

0≤γ≤1
sup

a∈[M ],u∈[N ]

|Zau[Gγ(z)Y γ ]au| > Nδ
)
.

The following monotonicity lemma will be a useful tool.
Lemma 5.1. Suppose that Ψ is good. Fix ε and ω as in Theorem 4.2. For all z = E+ iη ∈ D(ε1, ε2, ε3),
we set z′ = E′ + iη′ by

E′ = E +
(1−Nε/3)(

√
E2 + η2 − E)

2
, η′ = Nε/6η. (73)

Then for any δ > 0 and D > 0, there exists a large constant C > 0 such that

max
k∈{0,1,2}

Pk(δ, z,Ψ) ≤ CNC max
k∈{0,1,2}

Pk(ε/2, z′,Ψ) + CN−D. (74)

Proof. This is a minor modification of [4, Lemma 4.3]. The proof requires Theorem 4.2. For brevity, the
detail is provided in the supplementaries [11].

With the above lemma, we can prove Proposition 4.1.

Proof of Proposition 4.1. The proof is similar to the proof of Proposition 3.17 in [4]. Let ε be as in
Theorem 4.2. It follows from Lemma 5.1 that for any z0 = λmp

− +E0 + iη0 ∈ D(2ε1, ε2, ε3) and η0 ≤ N−ε,
we may find z1 = λmp

− + E1 + iη1 defined through (73) such that for any δ > 0,

max
k∈[0:2]

Pk(δ, z0,Ψ) ≤ C1N
C1 max

k∈[0:2]
Pk(ε/2, z1,Ψ) + C1N

−D. (75)

Now it suffices to bound maxk∈[0:2] Pk(ε/2, z1,Ψ). Notice that for ε > 3ε1

|E1| . |E0|+Nε/3|η0| . N−2ε1 +N−2/3ε � N−ε1 .

This means that z1 ∈ (ε1, ε2, ε3). Applying Lemma 5.1 again with δ = ε/2, we can find z2 = λmp
− +E2+iη2

max
k∈[0:2]

Pk(ε/2, z1,Ψ) ≤ C2N
C2 max

k∈[0:2]
Pk(ε/2, z2,Ψ) + C2N

−D,

where η2 = Nε/6η1 and |E2| � N−ε1 . We may now repeat the above procedure until zm = λmp
− +Em+iηm

with ηm ≥ KN−ε/2 for some sufficiently large K. It can be computed that

ηm . N−ε/2Nε/6 = N−ε/3, and |Em| . |E0|+
m−1∑
i=1

Nε/3ηi, ηi = Nεi/6η0.

This implies that |Em| . |E0|+N−ε/2 � N−ε1 . Then using the fact that maxk∈[0:2] Pk(ε/2, zm,Ψ) = 0,
we can obtain that

max
k∈[0:2]

Pk(δ, z0,Ψ) ≤ C1N
C1 max

k∈[0:2]
Pk(ε/2, z1,Ψ) + C1N

−D ≤ CmN−D.
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The claim now follows by adjusting constants.

5.3 Proof of Theorem 4.2

We need the following elementary resolvent expansion formula.
Lemma 5.2. For any deterministic matrix A ∈ RM×N , let its linearisation L(A) be defined as

L(A) =

(
0 A
A> 0

)
. (76)

Let R(A, z) = (z1/2L(A)− z)−1 be the resolvent of L(A). The Schur complement formula also gives

R(A, z) =

(
G(A, z) z−1/2G(A, z)A

z−1/2A>G(A, z) G(A>, z)

)
.

Then for any B = A+ ∆ ∈ RM×N , we have for any integer s ≥ 0

R(A, z) =

s∑
j=0

(
R(B, z)L(z1/2∆)

)jR(B, z) +
(
R(B, z)L(z1/2∆)

)s+1R(A, z).

Proof of Theorem 4.2. During the proof, we omit the z dependence and write dij =
dij(γ,wij) and eij = eij(γ,wij) for simplicity. We only show the proof for (#1,#2,#3) =
(XabIm [Gγ(z)]ab, XabIm [G0(z)]ab, I0,ab) with a ∈ Tr or b ∈ Tr, and the others can be proved similarly.
Observing that

∂EΨ

(
F ([ImGγ ]ab)

)
∂γ

= −
∑
i,j

EΨ

[
F (1)(Im [Gγ ]ab)Im

(
[Gγ ]ib[G

γY γ ]aj
)(

Aij −
γt1/2wij

(1− γ2)1/2

)]
−
∑
i,j

EΨ

[
F (1)(Im [Gγ ]ab)Im

(
[Gγ ]ai[(Y

γ)>Gγ ]jb
)(

Aij −
γt1/2wij

(1− γ2)1/2

)]
= −

∑
i,j

[
(I)ij + (II)ij

]
,

and therefore it suffices to show that there exists some constant C such that∑
i,j

[
|(I)ij |+ |(II)ij |

]
≤ C

(1− γ2)1/2

(
N−ω(I0,ab + 1) +Q0N

C0+C
)
. (77)

We will focus on the estimation for (I)ij ’s , while the estimates for the (II)ij ’s can be handled in an
identical fanshion. To ease the presentation, we further define the shorthand notation

f(ij)(λ) = U(ij)(λ)V(ij)(λ),

U(ij)(λ) = F (1)
(
Im
[
Gγ,λ(ij)

]
ab

)
, V(ij)(λ) = Im

(
[Gγ,λ(ij)]ib[G

γ,λ
(ij)Y

γ,λ
(ij) ]aj

)
.

We also define Ṽ(ij)(λ) = Im
(
[Gγ,λ(ij)]ai[(Y

γ,λ
(ij) )>Gγ,λ(ij)]jb

)
. Then for any i ∈ [M ], j ∈ [N ], (I)ij can be

rewritten as

(I)ij = EΨ

[
f(ij)([Y

γ ]ij)
(

Aij −
γt1/2wij

(1− γ2)1/2

)
· (1ψij=0 + 1ψij=1)

]
= EΨ

[
f(ij)(dij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)]
· 1ψij=0 + EΨ

[
f(ij)(eij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)]
· 1ψij=1

(∗)
= EΨ

[
f(ij)(dij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)]
· 1ψij=0 −

γ

(1− γ2)1/2
t1/2EΨ

[
wijf(ij)(eij)

]
· 1ψij=1

= (J1)ij − (J2)ij ,

29



where in (∗), we used the fact that Aij = 0 if ψij = 1.
Let us consider (J2)ij first. Applying Gaussian integration by parts on wij , we have

|(J2)ij | =
∣∣∣ γt1/2

(1− γ2)1/2N
EΨ

[
∂wijf(ij)(eij)

]
1ψij=1

∣∣∣
≤ γt1/2

(1− γ2)1/2N
EΨ

[∣∣∂wijf(ij)(eij)1Ω

∣∣]1ψij=1 +
γt1/2

(1− γ2)1/2N
EΨ

[∣∣∂wijf(ij)(eij)1Ωc
∣∣]1ψij=1.

Notice that

∂wijf(ij)(eij) = U(ij)(eij) · ∂wijV(ij)(eij) + V(ij)(eij) · ∂wijU(ij)(eij), (78)

and

∂wijU(ij)(eij) = −(1− γ2)1/2t1/2F (2)
(
Im
[
G
γ,eij
(ij)

]
ab

)(
V(ij)(eij) + Ṽ(ij)(eij)

)
,

∂wijV(ij)(eij) = −(1− γ2)1/2t1/2Im
([
G
γ,eij
(ij)

]
ii

[
(Y

γ,eij
(ij) )>G

γ,eij
(ij)

]
jb

[G
γ,eij
(ij) Y

γ,eij
(ij) ]aj

+
[
G
γ,eij
(ij) Y

γ,eij
(ij)

]
ij

[
G
γ,eij
(ij)

]
ib

[G
γ,eij
(ij) Y

γ,eij
(ij) ]aj − [G

γ,eij
(ij) ]ib[G

γ,eij
(ij) ]ai

+ [G
γ,eij
(ij) ]ib[G

γ,eij
(ij) ]ai[(Y

γ,eij
(ij) )>G

γ,eij
(ij) Y

γ,eij
(ij) ]jj + [G

γ,eij
(ij) ]ib[G

γ,eij
(ij) Y

γ,eij
(ij) ]aj [G

γ,eij
(ij) Y

γ,eij
(ij) ]ij

)
. (79)

When ψij = 1, we have i ∈ Dr and j ∈ Dc. Then 1Ω1ψij=1|V(ij)(eij)| ≤ N2εt−2 and

1Ω1ψij=1|∂wijV(ij)(eij)| ≤ N3εt−7/2. Therefore, we may find a large constant K1 > 0 such that

|(J2)ij | .
1ψij=1

N1−3εt3
EΨ

[∣∣F (1)
(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣]+
1ψij=1

N1−4εt3
EΨ

[∣∣F (2)
(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣]
+
t1/21ψij=1

N
EΨ

[∣∣∂wijf(ij)(eij)1Ωc
∣∣]

.
1ψij=1

N1−3εt3
EΨ

[∣∣F (1)
(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣]+
1ψij=1

N1−4εt3
EΨ

[∣∣F (2)
(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣]+NK1Q01ψij=1,

where in the second step, we used the crude bound that |∂wijf(ij)(eij)| ≤ NK1 for some sufficiently large
K1, which can be obtained by the fact that Im z > N−1. By the facts that

∑
i,j 1ψij=1 ≤ N1−εα and

t� N−εα/4 , we can choose ε < εα/16 to obtain that

|(J2)ij | .
1ψij=1

N1−εα/2
EΨ

[∣∣F (1)
(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣+
∣∣F (2)

(
Im
[
G
γ,eij
(ij)

]
ab

)∣∣]+NK1Q01ψij=1.

Next, we consider (J1)ij . Recall that dij = γ(1−χij)aij +χijbij +(1−γ2)1/2t1/2wji. Applying Taylor
expansion on f(dij) around 0, for an s1 to be chosen later, we have

(J1)ij =

s1∑
k=0

1ψij=0

k!
EΨ

[
(dij)

kf
(k)
(ij)(0)

(
Aij −

γt1/2wij
(1− γ2)1/2

)]
+

1ψij=0

(s1 + 1)!
EΨ

[
(dij)

s1+1f
(s1+1)
(ij) (d̃ij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)]
=

s∑
k=0

(J1)ij,k + Rem.

where d̃ij ∈ [0, dij ]. Before proceeding to the estimation of (J1)ij,k and Rem, we first establish perturba-

tion bounds for the entries of the resolvents, which are useful for the estimation of f
(k)
(ij)(0) and f

(k)
(ij)(d̃ij).

Using Lemma 5.2 and the notation therein, we have for any u, v ∈ [M +N ],

1Ω

[
R(Y

γ,dij
(ij) , z)−R(Y γ,0(ij) , z)

]
uv

=

s∑
j=0

1Ω

[(
R(Y

γ,dij
(ij) , z)L(z1/2dijEij)

)j
R(Y

γ,dij
(ij) , z)

]
uv
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+ 1Ω

[(
R(Y

γ,dij
(ij) , z)L(z1/2dijEij)

)s+1
R(Y γ,0(ij) , z)

]
uv
.

Further using the fact that 1Ω|dij | ≤ N−εb , 1Ω|
[
R(Y

γ,dij
(ij) , z)

]
uv
| ≤ Nε/t2, and the crude bound

‖R(Y γ,0(ij) , z)‖ ≤ N when Im z ≥ N−1, we may choose s large enough to obtain that

1Ω

∣∣[R(Y
γ,dij
(ij) , z)−R(Y γ,0(ij) , z)

]
uv

∣∣ . s∑
j=1

( N2ε

t4N εb

)j
+
( Nε

t2N εb

)s+1

N . 1, (80)

which yields directly a control of Gγ,0(ij), G
γ,0
(ij)Y

γ,0
(ij) , and (Y γ,0(ij))>Gγ,0(ij)Y

γ,0
(ij) on the event Ω. Here we used the

fact that Y >GY can be written in terms of G, which can be seen easily by singular value decomposition.

Similar estimates hold if Y γ,0(ij) is replaced by Y
γ,d̃ij
(ij) , we omit repetitive details. By taking derivatives

repeatedly similar to (78) and (79), it can be easily seen that for any integer k ≥ 0,

f
(k)
(ij)(dij) · 1ψij=0 · 1Ω .

N (C0+2k+2)ε

t2k+2
. (81)

Combining the above estimate with the perturbation bounds in (80), we have for any x ∈ [0, dij ],

f
(k)
(ij)(x) · 1ψij=0 · 1Ω .

N (C0+2k+2)ε

t2k+2
. (82)

Now we may start to estimate (J1)ij,k and Rem. Using the above perturbation bounds on the event
Ω, we have that there exists some large K2 > 0, such that

|Rem| ≤
1ψij=0

(s1 + 1)!
EΨ

[∣∣∣(dij)s1+1f
(s1+1)
(ij) (d̃ij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)∣∣∣ · 1Ω

]
+

1ψij=0

(s1 + 1)!
EΨ

[∣∣∣(dij)s1+1f
(s1+1)
(ij) (d̃ij)

(
Aij −

γt1/2wij
(1− γ2)1/2

)∣∣∣ · 1Ωc

]
.

N (C0+2s1+4)ε1ψij=0

t2s1+4N1/2+εa+(s1+1)εb
+NK2Q01ψij=0. (83)

Therefore, with the fact that t� N−εb/8, we may choose ε < εb/8 and s1 > C0/4 + 6/εb to obtain that

|Rem| . N−3 · 1ψij=0 +NK2Q0 · 1ψij=0.

We estimate (J1)ij,k for different k separately. For the case when k is even, it follows from the
symmetric condition that (J1)ij,k = 0. Thus we mainly focus on the estimation for k is odd.

Case 1: k ≥ 5. First note by symmetry condition, we can obtain

|(J1)ij,k| .
∑

u1+u2≥1,u3≥0
u1+u2+u3=(k+1)/2

EΨ

[
|Aij |2u1 |t1/2wij |2u2 |bij |2u3 |f (k)

(ij)(0)|
]
1ψij=0 .

t1ψij=0EΨ[|f (k)
(ij)(0)|]

N2+(k−3)εb
,

where in the last step we also used the fact that EΨ(bkij) ≤ N−εb(k−2)EΨ(x2
ij) . N−1−εb(k−2) for k ≥ 2.

We need to estimate f
(k)
(ij)(0) again by Taylor expansion. For an s2 to be chosen later, there exists

d̂ij ∈ [0, dij ] such that

|(J1)ij,k| .
s2∑
`=0

t1ψij=0EΨ[|f (k+`)
(ij) (dij)|]

N2+(k+`−3)εb
+
t1ψij=0EΨ[|f (k+s2+1)

(ij) (d̂ij)|]
N2+(k+s2−2)εb

. (84)
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On the event Ωc, we may estimate the RHS in the above display as in the last step in (83), which gives

( s2∑
`=0

tEΨ[|f (k+`)
(ij) (dij)|1Ωc ]

N2+(k+`−3)εb
+
tEΨ[|f (k+s2+1)

(ij) (d̂ij)|1Ωc ]

N2+(k+s2−2)εb

)
1ψij=0 . NK3Q01ψij=0, (85)

for some large K3 > 0. On the event Ω, we may choose s2 > C0 + 30 + 4/εb and ε < εb/8 to obtain that

( s2∑
`=0

t

N2+(k+`−3)εb
EΨ

[
|f (k+`)

(ij) (dij)|1Ω

]
+

t

N2+(k+s2−2)εb
EΨ

[
|f (k+s2+1)

(ij) (d̂ij)|1Ω

])
· 1ψij=0

.
s2∑
`=0

t1ψij=0

N2+(k+`−3)εb
EΨ

[
|f (k+`)

(ij) (dij)|1Ω

]
+N−31ψij=0

.
s2∑
`=0

N2(k+`+1)ε1ψij=0

N2+(k+`−3)εbt2(k+`)+1

k+`+1∑
m=1

EΨ

[
|F (m)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+N−31ψij=0. (86)

Collecting the above estimates and choosing ε < εb/100, we have

|(J1)ij,k| .
1ψij=0

N2+εb/2

k+s2+1∑
m=1

EΨ

[
|F (m)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+
1ψij=0

N2+εb/2
+NK3Q01ψij=0.

Case 2: k = 3. By direct calculation, we have

(J1)ij,3 � EΨ

[(
A4
ij + tA2

ijw
2
ij + t2w4

ij + A2
ijB

2
ij + tw2

ijB
2
ij

)
f

(3)
(ij)(0)

]
1ψij=0.

The term A2
ijB

2
ij becomes null due to the definitions of Aij and Bij . Concerning the remaining terms,

we only show how to estimate the term involving tw2
ijB

2
ij while the others can be handled similarly.

Applying Taylor expansion, and then estimating terms on Ωc and Ω separaterly as in (84)-(86), we have
for s3 > C0/4 + εb/2 + 4 ,

∣∣∣EΨ

[
tw2

ijB
2
ijf

(3)
(ij)(0)

]
1ψij=0

∣∣∣ . s3∑
`=0

t1ψij=0EΨ[|f (3+`)
(ij) (dij)|1Ω]

N2+`εb
+N−31ψij=0 +NK5Q01ψij=0,

for some large K5 > 0. Then it remains to estimate the first term of the RHS of the above inequality.
For ` ≥ 1, the estimate is similar to (86), we omit further details. Here we focus on the non-trivial term

when ` = 0. It is straightforward to compute that f
(3)
(ij)(dij) is the products of F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
, ` ∈

[4], and the entries of G
γ,dij
(ij) , G

γ,dij
(ij) Y

γ,dij
(ij) , and (Y

γ,dij
(ij) )>G

γ,dij
(ij) Y

γ,dij
(ij) , where the entries’ indices can be

(i, i), (j, j), (i, j), (a, i), (a, j), (i, b), (j, b). Therefore,

t

N2
EΨ

[
|f (3)

(ij)(dij)| · 1Ω

]
· 1ψij=0 ≤

tN6ε

N2

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]
· 1ψij=0 · 1i∈Tr,j∈Tc

+
N6ε

N2t7

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]
· 1ψij=0 · (1− 1i∈Tr,j∈Tc).

This eventually leads to

|(J1)ij,3| .
tN6ε1ψij=01i∈Tr,j∈Tc

N2

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+
N6ε1ψij=0(1− 1i∈Tr,j∈Tc)

N2t7

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]
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+
1ψij=0

N2+εb/2

s3+4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+N−31ψij=0 +NK5Q01ψij=0.

The second term in the above display can be estimated by the fact that |Dr| ∨ |Dc| ≤ N1−εd for some
εd > 0. By the fact that t� N−εd/20 ∨N−εb/20, we then have

|(J1)ij,3| .
t1/2

N2

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]
· 1ψij=0 · 1i∈Tr,j∈Tc

+
1ψij=0 · (1− 1i∈Tr,j∈Tc)

N2−εd/2

4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+
1ψij=0

N2+εb/2

s3+4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+N−3 · 1ψij=0 +NK5Q0 · 1ψij=0.

Case 3: k = 1. In this case, using the fact that EΨ[bij ] = 0, we may compute

(J1)ij,1 = γEΨ

[(
(1− χij)2a2

ij − tw2
ij

)
f

(1)
(ij)(0)

]
· 1ψij=0.

Recall that t = NE(A2
ij) = NE

(
(1− ψij)2(1− χij)2a2

ij

)
. This gives∣∣E((1− χij)2a2

ij

)
− E

(
tw2

ij

)∣∣ . tN−1−α/2+αεb . (87)

Therefore, following the same procedure as in (84)-(86), we can also obtain that for sufficiently large
constant s4,

|(J1)ij,1| .
1ψij=0

N2+εb/2

s4∑
`=1

EΨ

[
|F (`)

(
Im
[
G
γ,dij
(ij)

]
ab

)
|
]

+N−3 · 1ψij=0 +NK5Q0 · 1ψij=0.

By combining the estimates of (J1)ij,k’s with (J2)ij ’s, we can conclude that (77) holds when we choose
ε ≤ min{εα, εb, εd}/(100).

5.4 Proof of Theorem 4.3

Since we need to perform the comparison at a random edge, we begin with some preliminary estimates
for the derivatives w.r.t. the matrix entries of the random edge.
Lemma 5.3 ([22], Lemma 5). Denote ak,±(t) = Φt(ζk,±(t)), 1 ≤ k ≤ q. Then (ak,±(t), ζk,±(t)) are real
solutions of

Ft(z, ζ) = 0, and
∂Ft
∂ζ

(z, ζ) = 0,

where

Ft(z, ζ) = 1 +
t(1− cN )−

√
t2(1− cN )2 + 4ζz

2ζ
− cN tmX(ζ).

Using the lemma above, we can derive bounds for the derivatives of the random edge λ−,t w.r.t. the
matrix entries bij .
Lemma 5.4. Suppose that Ψ is good. If we view λ−,t as a function of Bij , i ∈ [M ], j ∈ [N ]. For any
i ∈ [M ] and j ∈ [N ], write λ−,t(x) = λ−,t(Bij = x). Then for any integer k ≥ 1 and for any b ∈ [0,Bij ],
we have ∣∣∣∂kλ−,t

∂Bkij
(b)
∣∣∣1ψij=0 ≺

1

Nt2k+1
,

∣∣∣∂kζ−,t
∂Bkij

(b)
∣∣∣1ψij=0 ≺

1

Nt2k+1
. (88)
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Further, there exists some constants Ck > 0 such that the following deterministic bounds hold,∣∣∣∂λ−,t
∂Bij

(b)
∣∣∣1ψij=0 ≤ NC1 ,

∣∣∣∂kλ−,t
∂Bkij

(b)
∣∣∣1ψij=0 · Ξ(λ−,t) ≤ NCk , (89)

where Ξ(x) is a smooth cut off function which equals 0 when x < λmp
− /100 and 1 when x > λmp

− /2 and

|Ξ(n)(x)| = O(1) for all n ≥ 1.
Remark 7. Here we remark that in the second estimate of (89), we added a cutoff function, in order to
get a deterministic bound for the λ−,t derivatives, which is needed when we take expectation EΨ. Hence,
actually, we should work with EΨ

(
|Nη

(
Immγ(zt)−Im m̃0(zt)

)
Ξ(λ−,t)|2p

)
instead of EΨ

(
|Nη

(
Immγ(zt)−

Im m̃0(zt)
)
|2p
)

to make sure that all quantities in the expansions have bounded expectations. Adding such
a cutoff factor will not complicates the expansions since again by the chain rule it boils down to the
λ−,t derivatives. Hence, additional technical inputs are not needed for the comparison of the modified
quantity. However, in order to ease the presentation, we will state the reasoning for the original quantity
and proceed as if all random factors in the expansion have deterministic upper bound.

Proof. Let ψij = 0. To emphasis the dependence with X, we first note that Ft(z, ζ) can be rewritten as,

Ft(z, ζ,X) = 1 +
t(1− cN )−

√
t2(1− cN )2 + 4ζz

2ζ
− cN t

M
TrG(X, ζ).

Using Lemma 5.3, we have

Ft(λ−,t, ζ−,t, X) = 0, and
∂Ft
∂ζ

(λ−,t, ζ−,t, X) = 0. (90)

Then taking derivative of (90) gives

∂λ−,t
∂Bij

∂Ft
∂z

(λ−,t, ζ−,t, X) +
∂Ft
∂xij

(λ−,t, ζ−,t, X)) = 0.

Therefore, we may solve the above equation to obtain that

∂λ−,t
∂Bij

=
2cN t

√
t2(1− cN )2 + 4λ−,tζ−,t

M

[
X>(G(X, ζ−,t))

2
]
ji
. (91)

Notice that

∣∣[X>(G(X, ζ−,t))
2
]
ji

∣∣ (i)

≤
∣∣[X>(G(X, ζ−,t))

2X
]
jj

∣∣1/2 · ∣∣[(G(X, ζ−,t))
2
]
ii

∣∣1/2
=
∣∣[G(X>, ζ−,t)

]
jj

+ ζ−,t
[
(G(X>, ζ−,t))

2
]
jj

∣∣1/2 · ∣∣[(G(X, ζ−,t))
2
]
ii

∣∣1/2
.
(
‖G(X>, ζ−,t)‖1/2 + |ζ−,t|‖G(X>, ζ−,t)‖

)
· ‖G(X, ζ−,t)‖

(ii)
≺ t−4, (92)

where in (i) we applied Cauchy-Schwarz inequality, and in (ii) we used Lemma 3.2 (i). Therefore, we can
obtain that ∂Bijλ−,t(b).

Next we view Φt(ζ) as a function of X, and write Φt(ζ,X) = Φt(ζ). By Lemma 3.1, we have
∂Φt
∂ζ (ζ−,t, X) = 0. Further taking derivative w.r.t Bij on this equation gives

∂2Φt
∂ζ2

(ζ−,t, X)
∂ζ−,t
∂Bij

+
∂2Φt
∂ζ∂xij

(ζ−,t, X) = 0. (93)

By direct calculation, we have

∂2Φt
∂ζ∂xij

(ζ−,t, X) =
4cN t

M
[X>(G(X, ζ−,t))

2]ji −
2c2N t

2mX(ζ−,t)

M
[X>(G(X, ζ−,t))

2]ji
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+
8cN tζ−,t(1− cN tmX(ζ−,t))

M
[X>(G(X, ζ−,t))

3]ji −
4c2N t

2ζ−,tm
′
X(ζ−,t)

M
[X>(G(X, ζ−,t))

2]ji

+
4cN (1− cN )t2

M
[X>(G(X, ζ−,t))

2]ji.

A similar argument as in (92) leads to
[
X>(G(X, ζ−,t))

3
]
ji
≺ t−6. This together with the fact that

cN tmX(ζ−,t) ≺ t1/2 and m′X(ζ−,t) ∼ t−1 gives ∂2Φt
∂ζ∂xij

(ζ−,t, X) ≺ 1/(Nt5). We can also compute that

∂2Φt
∂ζ2

(ζ−,t, X) = −2cN tm
′′
X(ζ−,t)ζ−,t(1− cN tmX(ζ−,t))− 4cN tm

′
X(ζ−,t)(1− cN tmX(ζ−,t))

+ 2ζ−,t(cN tm
′
X(ζ−,t))

2 − cN (1− cN )t2m′′X(ζ−,t). (94)

Using Lemma 2.2 with the fact ζ−,t − λM (S(X)) ∼ t2 w.h.p., we have w.h.p. that ∂2Φt
∂ζ2 (ζ−,t, X) ∼ t2.

Combining the above bounds gives ∂Bijζ−,t ≺ 1/(Nt3).
It is worth noting that for any integer k ≥ 2, the ∂kBijλ−,t can be expressed as a function of ∂`Bijλ−,t

and ∂`Bijζ−,t, where ` ranges from 0 to k − 1. Similarly, ∂kBijζ−,t is solely dependent on ∂`Bijζ−,t, where
` ranges from 0 to k − 1. By employing the product rule and adopting a similar argument as used in
(92) to bound the Green function entries, we can observe that the order of ∂`Bijλ−,t is determined by the

term that includes ∂k−1
Bij

[X>(G(X, ζ−,t))
2]ji. Similarly, the order of ∂`Bijζ−,t is determined by the term

that includes ∂k−1
Bij

[X>(G(X, ζ−,t))
3]ji. This allows us to conclude that for any k ≥ 1

∂kλ−,t
∂Bkij

≺ 1

Nt2k+1
,

∂kζ−,t
∂Bkij

≺ 1

Nt2k+1
.

The claim now follows by noting that the above bounds still hold when we replace Bij in X with some
other b ∈ [0,Bij ]. The reason behind this is that the replacement matrix still satisfies the η∗-regularity
condition, ensuring that the corresponding ζ−,t and λM still satisfy Lemma 3.2 (i).

Next, we prove a deterministic upper bound for ∂Bijλ−,t. For notational simplicity, we will only work
on the original matrix X, and the argument holds for the replacement matrix X(ij)(b). In view of (91), it

suffices to obtain deterministic upper bounds for λ−,t, ζ−,t, and [X>(G(X, ζ−,t))
2]ji. We may first apply

Cauchy interlacing theorem to obtain an upper bound for ζ−,t as follows:

ζ−,t ≤ λM (S(X)) ≤ λM−|Dr|(S(B(Dr))) ≤ N2−2εb , (95)

where in the last step we used the fact that the entries of S(B(Dr)) are bounded by N−εb . From (25), we
have cN tmX(ζ−,t) = cN tmt(λ−,t)/(1 + cN tmt(λ−,t)), which gives the deterministic bound mX(ζ−,t) ≤
(cN t)

−1. Using this deterministic bound, we have that there exists some constant C > 0 such that

1

M
≤ 1

M

M∑
i=1

λM (S(X))− ζ−,t
λi(S(X))− ζ−,t

≤ Ct−1(λM (S(X))− ζ−,t).

This together with the fact that λM (S(X)) ≥ ζ−,t (cf. Lemma 3.2 (i)) gives λM (S(X))−ζ−,t ≥ C−1t/M .

Therefore, we are able to obtain deterministic bounds for the high order derivatives m
(k)
X (ζ−,t) as well

as the spectral norm of G(X, ζ−,t). We can also obtain that

|λ−,t| =
∣∣[1− cN tmX(ζ−,t)

]2
ζ−,t + (1− cN )t

[
1− cN tmX(ζ−,t)

]∣∣ . N2−2εb .

For the upper bound of |[X>(G(X, ζ−,t))
2]ji|, we have

|[X>(G(X, ζ−,t))
2]ji| ≤

∣∣[X>(G(X, ζ−,t))
2X]jj

∣∣1/2 · ∣∣[(G(X, ζ−,t))
2
]
ii
|1/2

≤ ‖(G(X, ζ−,t))
2XX>‖1/2 · ‖(G(X, ζ−,t))

2‖1/2
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≤
(
‖G(X, ζ−,t)‖1/2 + |ζ−,t|‖G(X, ζ−,t)‖

)
· ‖G(X, ζ−,t)‖ . N2−2εbM2t−2.

Collecting the above bounds proves the first bound in (89).

To prove the second bound in (89), it suffices to provide a lower bound for ∂2Φt
∂ζ2 (ζ−,t, X) (cf. (93)).

When λ−,t ≥ λmp
− /100, we have

|cN tmX(ζ−,t)| =
∣∣∣ cN tmt(λ−,t)

1 + cN tmt(λ−,t)

∣∣∣ ≤ |cN tmt(λ−,t)| .
t1/2

|λ−t|
. t1/2.

Therefore, using Cauchy-Schwarz inequality, we have

(cN tm
′
X(ζ−,t))

2 ≤ cN tmX(ζ−,t) · cN tm′′X(ζ−,t)

2
� cN tm

′′
X(ζ−,t).

This implies that −2cN tm
′′
X(ζ−,t)ζ−,t(1− cN tmX(ζ−,t))+2ζ−,t(cN tm

′
X(ζ−,t))

2 < 0. Then using (94), we

may lower bound ∂2Φt
∂ζ2 (ζ−,t, X) as follows:

∣∣∣∂2Φt
∂ζ2

(ζ−,t, X)
∣∣∣ > cN (1− cN )t2m′′X(ζ−,t) ≥

2cN (1− cN )t2

M(λM (S(X))− ζ−,t)3
≥ 2cN (1− cN )t2

MN6−6εb
,

where in the last step we used (95).

Next, we start the proof of Theorem 4.3.

Proof of Theorem 4.3. We begin by collecting some notation to simplify the presentation of the proof.
Consider w̃ij as the (i, j)-entry of W̃ , and define Ỹ γ analogously to Y γ , with the substitution of W by

W̃ . Recall (72) and we write dij = dij(γ,wij), eij = eij(γ,wij), d̃ij = dij(0, w̃ij), and ẽij = ẽij(0, w̃ij) in

the sequel. To emphasize that λ−,t is a function of X, we introduce the notation λ
(ij)
−,t (β) = λ−,t(X

β
(ij)).

Consequently, we define z
(ij)
t (β) = λ

(ij)
−,t (β)+E+iη. For simplicity, we use the shorthand notation Gγ,λ,β(ij)

as Gγ,λ(ij)

(
z

(ij)
t (β)

)
, and we define G̃γ,λ,β(ij) analogously, replacing W with W̃ .

We will focus on the estimation of ∂EΨ(|Nη(Immγ(zt)−Im m̃0(zt))|2p)
∂γ . To this end, let us define

fγ,(ab),(ij)(λ, β) = Im [Gγ,λ,β(ij) ]ab, f̃γ,(ab),(ij)(λ, β) = Im [G̃γ,λ,β(ij) ]ab, g(ij)(λ, β) = ηIm [
(
Gγ,λ,β(ij)

)2
Y γ,λ,β(ij) ]ij ,

and Fp(λ, λ̃, β) = (η
∑

a fγ,(aa),(ij)(λ, β)− η
∑

a f̃0,(aa),(ij)(λ̃,β))p. Some elementary calculation gives

∂EΨ

(∣∣Nη(Immγ(zt)− Im m̃0(zt)
)∣∣2p)

∂γ
= −2p

∑
i,j

(
(J1)ij + (J2)ij

)
,

where

(J1)ij = EΨ

[
g(ij)(dij , χijbij)EijF2p−1(dij , d̃ij , χijbij)

]
· 1ψij=0,

(J2)ij = − γt1/2

(1− γ2)1/2
EΨ

[
wijg(ij)(eij , cij)F2p−1(eij , ẽij , cij)

]
· 1ψij=1,

Eij = (1− χij)aij − γt1/2(1− γ2)−1/2wij .

For (J2)ij , we may apply Gaussian integration by parts to obtain that

(J2)ij = − γt1/2

(1− γ2)1/2N

(
EΨ

[
∂wij

{
g(ij)(eij , cij)

}
F2p−1(eij , ẽij , cij)

]
+ (2p− 1)EΨ

[
g(ij)(eij , cij)∂wij

{
η
∑
a

fγ,(aa),(ij)(eij , cij)
}
F2p−2(eij , ẽij , cij)

])
· 1ψij=1.
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Note by directly calculation, we have

∂wij
{
g(ij)(eij , cij)

}
=
(

Im
[(
G
γ,eij ,cij
(ij)

)2]
ii
− 2Im

([(
G
γ,eij ,cij
(ij)

)2]
ii

[
(Y

γ,eij
(ij) )>G

γ,eij ,cij
(ij) Y

γ,eij
(ij)

]
jj

)
− 2Im

([(
G
γ,eij ,cij
(ij)

)2
Y
γ,eij
(ij)

]
ij

[
G
γ,eij ,cij
(ij) Y

γ,eij
(ij)

]
ij

))
(1− γ2)1/2t1/2η, (96)

and ∂wij
{
η
∑

a fγ,(aa),(ij)(eij , cij)
}

= −2t1/2(1− γ2)1/2g(ij)(eij , cij). Using Wald’s identity with the fact
that i ∈ Dr and j ∈ Dc when ψij = 1, we can obtain that

|
[(
G
γ,eij ,cij
(ij)

)2]
ii
| ≤

∑
a

|
[
G
γ,eij ,cij
(ij)

]
ai
|2 =

Im
[
G
γ,eij ,cij
(ij)

]
ii

η
≺ t−2η−1, (97)

and

|
[
(G

γ,eij ,cij
(ij) )2Y

γ,eij
(ij)

]
ij
| ≤

∑
a

|
[
G
γ,eij ,cij
(ij) Y

γ,eij
(ij)

]
aj
|2 +

∑
a

|
[
G
γ,eij ,cij
(ij)

]
ia
|2

(i)
=
[
(Y

γ,eij
(ij) )>|Gγ,eij ,cij(ij) |2Y γ,eij(ij)

]
jj

+ η−1Im
[
G
γ,eij ,cij
(ij)

]
ii

(ii)
=
[
(Y

γ,eij
(ij) )>Y

γ,eij
(ij) |G

γ,eij ,cij
(ij) |2

]
jj

+ η−1Im
[
G
γ,eij ,cij
(ij)

]
ii

=
[
Ḡγ,eij ,cij(ij)

]
jj

+ z
[
|Gγ,eij ,cij(ij) |2

]
jj

+ η−1Im
[
G
γ,eij ,cij
(ij)

]
ii

(iii)
≺ t−2η−1, (98)

where in (i) we applied Wald’s identity, in (ii) we used the fact that for any A ∈ RM×N , (AA>−z)−1A =
A>(AA>− z)−1 when z does not lie inside the spectrum of A, and in (iii) we estimate

[
|Gγ,eij ,cij(ij) |2

]
jj

in

a similar way as done in (97).
Combining the above estimates with the fact that

∑
i,j 1ψij=1 ≤ N1−εα , we arrive at

|(J2)ij | .
γ

(1− γ2)1/2N1−εα

2∑
k=1

EΨ

[
|O≺(N−εαt−3)| · |F2p−k(eij , ẽij , cij)|

]
· 1ψij=1.

We may then apply Young’s inequality as the following:

EΨ

[
|O≺(N−εαt−3)| · |F2p−1(eij , ẽij , cij)|

]
(∗)
= EΨ

[
|O≺(N−εαt−3)| · |F2p−1(eij , ẽij , cij)|

logN

]
(∗∗)
. (logN)

2p
1−2pEΨ

[
F2p(eij , ẽij , cij)

]
+N−εαp, (99)

where in (∗) we used the definition of stochastic domination, and in (∗∗) we used the fact that t� N−εα/6.
Similar argument can be applied to the second term involving F2p−2, and therefore,

|(J2)ij | .
γ

(1− γ2)1/2N1−εα

(
(logN)

2p
1−2pEΨ

[
F2p(eij , ẽij , cij)

]
+N−εαp/2

)
· 1ψij=1.

Next, we consider (J1)ij . Observe that by repeatedly taking derivatives w.r.t. dij , it
can be easily seen that ∂kdij

{
g(ij)(dij , χijbij)

}
/η can be expressed as a linear combination

of the imaginary parts of A(a1, a2, a3) · B, where A(a1, a2, a3) =
([
G
γ,dij ,χijbij
(ij) Y

γ,dij
(ij)

]
ij

)a1 ·([
G
γ,dij ,χijbij
(ij)

]
ii

)a2 ·
([

(Y
γ,dij
(ij) )>G

γ,dij ,χijbij
(ij) Y

γ,dij
(ij)

]
jj

)a3
for any integer a1, a2, a3 ≥ 0, and B ∈

{
[
(Y

γ,dij
(ij) )>(G

γ,dij ,χijbij
(ij) )2Y

γ,dij
(ij)

]
jj
,
[
(G

γ,dij ,χijbij
(ij) )2Y

γ,dij
(ij)

]
ij
,
[
(G

γ,dij ,χijbij
(ij) )2

]
ii
}. The same holds for

∂kdij
{∑

a fγ,(aa),(ij)(dij , χijbij)
}

since ∂dij
{
η
∑

a fγ,(aa),(ij)(dij , χijbij)
}

= −2g(ij)(dij , χijbij). This

together with a similar argument as (97) and (98) implies that

|A(a1, a2, a3)| · 1ψij=0 ≺ t−2(a1+a2+a3), and |B| · 1ψij=0 ≺ t−2η−1. (100)
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The estimation of (J1)ij relies on a careful analysis of expansion. Here, we introduce g
(k1,k2)
(ij) as the mixed

(k1, k2)-th order derivative of g(ij)(λ, β) w.r.t. λ and β, and F
(k1,k2,k3)
2p−1 represents the mixed (k1, k2, k3)-

th order derivative of F2p−1(λ, λ̃, β) w.r.t. λ, λ̃, and β. Applying Taylor expansion on g(ij)(dij , χijbij) on
the first variable around 0, we have for an s1 to be chosen later, there exists d̄ij ∈ [0, dij ] such that,

(J1)ij =

s1∑
k=0

EΨ

[dkijg(k,0)
(ij) (0, χijbij)

k!
EijF2p−1(dij , d̃ij , χijbij)

]
· 1ψij=0

+ EΨ

[ds1+1
ij g

(s1+1,0)
(ij) (d̄ij , χijbij)

(s1 + 1)!
EijF2p−1(dij , d̃ij , χijbij)

]
· 1ψij=0 =

s1∑
k=0

1

k!
(J1)ij,k + Rem1.

By the entries bound in Proposition 4.1, (97), (98), and the perturbation argument in (80), we may
crudely bound the above remainder term as follows:

|Rem1| .
1ψij=0

N (s1+2)εb
EΨ

[
|g(s1+1,0)

(ij) (d̄ij , χijbij)| · |F2p−1(dij , d̃ij , χijbij)|
]
.

N εN2p

N (s1+2)εbt2s1+4
. N−p,

where in the second inequality, we used the deterministic bound |F2p−1(dij , d̃ij , χijbij)| ≤ N2p−1, and in
the last step, we chose s1 > 6p/εb and used the fact that t � N−εb/8. We may apply similar argument
to expand the first two variables of F2p−1(dij , d̃ij , χijbij) in (J1)ij,k to obtain that

(J1)ij,k =

s2∑
`=0

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij g

(k,0)
(ij) (0, χijbij)

m!(`−m)!
EijF (m,`−m,0)

2p−1 (0, 0, χijbij)
]
· 1ψij=0 +O(N−p)

=

s2∑
`=0

(J1)ij,k` +O(N−p).

where s2 is a large integer satisfying s2 > 6p/εb. To estimate (J1)ij,k`, we start by introducing the
notation tij = t2 · (1 − 1i∈Tr,j∈Tc) + 1i∈Tr,j∈Tc for presentation simplicity. Note by the chain rule, we
have for any integer ` ≥ 0 and m ≤ `,

Fm,`−m,02p−1 (0, 0, χijbij) =

`∧(2p−1)∑
k=1

Cχijbijk,m F2p−1−k(0, 0, χijbij) + Cχijbij`+1,m1`≥(2p−1), (101)

where for all k ∈ [`+ 1], m ∈ [`], Cχijbijk,m are polynomials of the following terms

[
G
γ,0,χijbij
(ij) Y γ,0(ij)

]
ij
,
[
G
γ,0,χijbij
(ij)

]
ii
,
[
(Y γ,0(ij))>G

γ,0,χijbij
(ij) Y γ,0(ij)

]
jj
,
[
(G

γ,0,χijbij
(ij) )2Y γ,0(ij)

]
ij
,
[
(G

γ,0,χijbij
(ij) )2

]
ii
,[

G̃
0,0,χijbij
(ij) Ỹ 0,0

(ij)

]
ij
,
[
G̃

0,0,χijbij
(ij)

]
ii
,
[
(Ỹ 0,0

(ij))
>G̃

0,0,χijbij
(ij) Ỹ 0,0

(ij)

]
jj
,
[
(G̃

0,0,χijbij
(ij) )2Ỹ 0,0

(ij)

]
ij
,
[
(G̃

0,0,χijbij
(ij) )2

]
ii
.

After carrying out a similar derivation as shown in (96)-(98) and employing the perturbation argument

described in (80), it can be easily verified that Cχijbijk,m · 1ψij=0 ≺ t−(`+1)
ij .

Plugging (101) into (J1)ij,k`, we have

(J1)ij,k` =

`∧(2p−1)∑
n=1

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij Eij
m!(`−m)!

g
(k,0)
(ij) (0, χijbij)Cχijbijn,m F2p−1−n(0, 0, χijbij)

]
· 1ψij=0

+
∑̀
m=0

EΨ

[dk+m
ij d̃`−mij Eij
m!(`−m)!

g
(k,0)
(ij) (0, χijbij)C

χijbij
`+1,m1`≥(2p−1)

]
· 1ψij=0 = (T1)ij,k` + (T2)ij,k`.
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For (T2)ij,k`, we only need to consider the case when ` ≥ 2p − 1. Using g
(k,0)
(ij) (0, χijbij) ≺ t

−(k+1)
ij with

the fact that t� N−εb/8, we can conclude that |(T2)ij,k`| . N−εbp. Next, we focus on the estimation of
(T1)ij,k`.

When k + ` is even, we have by the law of total expectation that,

(T1)ij,k` =

`∧(2p−1)∑
n=1

∑̀
m=0

EΨ

[ (γaij + (1− γ2)1/2t1/2wij)
k+m(t1/2w̃ij)

`−m

m!(`−m)!
g

(k,0)
(ij) (0, 0)

×
(
aij −

γt1/2wij
(1− γ2)1/2

)
C0
n,mF2p−1−n(0, 0, 0)

]
· P(χij = 0) · 1ψij=0

−
`∧(2p−1)∑
n=1

∑̀
m=0

EΨ

[γ(bij + (1− γ2)1/2t1/2wij)
k+m(bij + t1/2w̃ij)

`−mt1/2wij
(1− γ2)1/2m!(`−m)!

× g(k,0)
(ij) (0, bij)Cbijn,mF2p−1−n(0, 0, bij)

]
· P(χij = 1) · 1ψij=0. (102)

From the above equation, one can easily verify that (T1)ij,k` = 0 when k + ` is even. Therefore, in the
rest of the estimation, we consider the case of k + ` is odd. In this case, we need to further expand out

χijbij in Cχijbijn,m , g
(k,0)
(ij) (0, χijbij) and F2p−1−n(0, 0, χijbij).

First note by Taylor expansion, for any s3 ≥ 0 there exists b
(1)
ij ∈ [0, χijbij ] such that

g
(k,0)
(ij) (0, χijbij) =

s3∑
q=0

(χijbij)
q

q!
g

(k,q)
(ij) (0, 0) +

(χijbij)
s3+1

(s3 + 1)!
g

(k,s3+1)
(ij) (0, b

(1)
ij ). (103)

By Faà di Bruno’s formula, for q ≥ 1, g
(k,q)
(ij) (λ, β) can be expressed as

g
(k,q)
(ij) (λ, β) =

∑
(u1,··· ,uq)

q!

u1!u2! · · ·uq!
∂u1+···+uq
z g

(k,0)
(ij) (λ, β) ·

q∏
v=1

(∂vλ(ij)
−,t

∂βv
(β)
)uv

, (104)

where the sum
∑

(u1,··· ,uq) is over all q-tuples of nonnegative integers (u1, · · · , uq) satisfying
∑q

i=1 iui = q.

We may then use (88) in Lemma 5.4 to bound the derivatives of λ
(ij)
−,t and a Cauchy integral argument

to bound the derivatives of g
(k,0)
(ij) w.r.t z, which gives

g
(k,q)
(ij) (0, 0) · 1ψij=0 ≺

∑
(u1,··· ,uq)

1

ηu1+···+uq tk+1
ij

q∏
v=1

1

Nuv t(2v+1)uv
≺ 1

Nηt3qtk+1
ij

, q ≥ 1. (105)

and the same bound holds for g
(k,q)
(ij) (0, b

(1)
ij ). Therefore, by choosing s3 > 6p/εb together with the facts

that Cχijbijn,m ≺ t−(k+1)
ij , |F2p−1−n(0, 0, χijbij)| . N2p−1−n, we can obtain that

(T1)ij,k` =

`∧(2p−1)∑
n=1

s3∑
q=0

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

qEij
q!m!(`−m)!

g
(k,q)
(ij) (0, 0)Cχijbijn,m

× F2p−1−n(0, 0, χijbij)
]
· 1ψij=0 +O(N−εbp) =

`∧(2p−1)∑
n=1

s3∑
q=0

(T1)ij,k`,nq +O(N−εbp).
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For (T1)ij,k`,nq, the term Cχijbijn,m can be expanded in a similar way as done for g
(k,0)
(ij) (0, χijbij) in (103)

and (104), we omit the details. This leads to

(T1)ij,k`,nq =

s4∑
r=0

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

q+rEij
r!q!m!(`−m)!

g
(k,q)
(ij) (0, 0)

× C(r),0
n,m F2p−1−n(0, 0, χijbij)

]
· 1ψij=0 +O(N−εbp),

where s4 > 6p/εb and

C(r),0
n,m =

∂rCβn,m
∂βr

∣∣∣
β=0

, and C(r),0
n,m ≺

1

Nηt3rt`+1
ij

, r ≥ 1. (106)

Next, we deal with F2p−1−n(0, 0, χijbij). For any s ≥ 0, we can compute that

F
(0,0,s)
2p−1−n(0, 0, 0) =

∑
(u1,··· ,us)

s!

u1!u2! · · ·us!
∂u1+···+us
z F2p−1−n(0, 0, 0) ·

s∏
w=1

(∂wλ
(ij)
−,t

∂βw
(0)
)uw

, (107)

and for any integer ϑ ≥ 0,

∂ϑz F2p−1−n(0, 0, 0) =
∑

(v1,··· ,vϑ)
v1+···+vϑ≤2p−1−n

ϑ!

u1!v2! · · · vϑ!
F2p−1−n−(v1+···+vϑ)(0, 0, 0)

×
ϑ∏

w=1

(
ηIm Tr

(
Gγ,0,0(ij)

)w+1 − ηIm Tr
(
G̃0,0,0

(ij)

)w+1
)vw

. (108)

Combining the above two expression, and using Lemma 5.4, we can estimate the remainder term as done
for Rem3, which gives

(T1)ij,k`,nq =

s4∑
r=0

s5∑
s=0

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

q+r+sEij
s!r!q!m!(`−m)!

]
× EΨ

[
g

(k,q)
(ij) (0, 0)C0,(r)

n,m F
(0,0,s)
2p−1−n(0, 0, 0)

]
· 1ψij=0 +O(N−εbp), (109)

for some large enough integer s5. Here we also used the independency between the random variables.
Then it suffices to estimate (T1)ij,k`,nq in two different cases, k + ` = 1 and k + ` ≥ 3 (recall that we
only need to consider the case when k + ` is odd, cf. (102)).

Case 1: k+ ` ≥ 3. From (109), using the estimates (105) and (106), and the fact that E(b2ij) . N−1,

E((1− χij)a2
ij) � tE(w2

ij) = t/N , we have

(T1)ij,k`,nq =

s4∑
r=0

s5∑
s=0

O
( t

N2+(k+`+q+r+s−3)εb

)
× EΨ

[
O≺
( 1

t3(q+r)tk+`+2
ij

)
F

(0,0,s)
2p−1−n(0, 0, 0)

]
· 1ψij=0 +O(N−εbp). (110)

Note that we have already derived the expression of F
(0,0,s)
2p−1−n(0, 0, 0) in (107) and (108). Then using the

following inequality:∣∣ηIm Tr
(
Gγ,0,0(ij)

)w+1 − ηIm Tr
(
G̃0,0,0

(ij)

)w+1∣∣vw .
∣∣ηIm Tr

(
Gγ,0,0(ij)

)w+1∣∣vw
+
∣∣ηIm Tr

(
G̃0,0,0

(ij)

)w+1∣∣vw

≤ η−wvw
(∣∣ηIm TrGγ,0,0(ij)

∣∣vw
+
∣∣ηIm TrG̃0,0,0

(ij)

∣∣vw
)
. η−wvw

(
|Fvw (0, 0, 0)|+

∣∣ηIm TrG̃0,0,0
(ij)

∣∣vw
)
, (111)

40



together with Lemma 5.4 and the fact that ηIm TrG̃0,0,0
(ij) ≺ Nη

√
|E|+ η ≤ N1−ε1/2η (this can be done

by bounding
(
ηIm TrG̃0,0,0

(ij) − ηIm TrG̃
0,dij ,χijbij
(ij) ) · 1ψij=0 through Taylor expansion and then using local

law for the Gaussian divisible model (cf. (18)) that
(
ηIm TrG̃

0,dij ,χijbij
(ij) −NηImmt(zt)

)
·1ψij=0 ≺ 1 with

Immt(zt) ≺
√
|E|+ η (cf. (33))), we can obtain that

|(T1)ij,k`,nq| ≤
1

N2

2p−1−n∑
a=0

EΨ

[
O≺
( t

N (k+`+a−3)εbt3at
(k+`+2)
ij

)
|F2p−1−n−a(0, 0, 0)|

]
· 1ψij=0 +O(N−εbp).

Substituting this back into (T1)ij,k` and considering that t � N−εb/100 ∨ N−εd/20, a straightforward
calculation yields that: if k + ` ≥ 5,

|(T1)ij,k`| ≤
1

N2

2p−1∑
n=1

EΨ

[
O≺
( 1

N (n+1)εb/10

)
|F2p−1−n(0, 0, 0)|

]
· 1ψij=0 +O(N−εbp), (112)

and if k + ` ≥ 3,

|(T1)ij,k`| ≤
`∧(2p−1)∑
n=1

2p−1−n∑
a=0

(1ψij=0(1− 1i∈Tr,j∈Tc)

N2−εd
EΨ

[
O≺
( 1

N aεb/10+εd/2

)
|F2p−1−n−a(0, 0, 0)|

]
+

1ψij=01i∈Tr,j∈Tc
N2

EΨ

[
O≺
( t

N aεb/10

)
|F2p−1−n−a(0, 0, 0)|

])
+O(N−εbp). (113)

Next, we shall replace F2p−1−n(0, 0, 0) · 1ψij=0 back by F2p−1−n(dij , d̃ij , χijbij) · 1ψij=0. Applying
Taylor expansion on the third variable and then using (107)-(111), we can obtain that

|F2p−1−n(0, 0, 0)| ≤
2p−1−n∑

a=0

O≺
(
N−εba/10

)
· |F2p−1−n−a(0, 0, χijbij)|+O≺(N−εbp).

Therefore, we have that (112) and (113) remain valid, with (0, 0, 0) replaced by (0, 0, χijbij). Using Taylor

expansion again, for a large enough integer s7, there exists d1,ij ∈ [0, dij ], d2,ij ∈ [0, d̃ij ] such that

F2p−1−n(0, 0, χijbij) =

s7∑
u=0

u∑
v=0

(−dij)v(−d̃ij)u−v

v!(u− v)!
· F (v,u−v,0)

2p−1−n (dij , d̃ij , χijbij)

+

s7+1∑
`=0

(−dij)v(−d̃ij)s7+1−v

v!(s7 + 1− v)!
· F (v,s7+1−v,0)

2p−1−n (d1,ij , d2,ij , χijbij).

Then we may use (101)(with minor modification that replace (0, 0, χijbij) by (dij , d̃ij , χijbij)) to trans-

form F
(v,u−v,0)
2p−1−n (dij , d̃ij , χijbij) to F2p−1−r(dij , d̃ij , χijbij) for some r ≥ n. It can also be easily checked

that the resulting coefficients of F2p−1−r can be compensated by bounding |dij |, |d̃ij | by N−εb (w.h.p).

This finally confirms that (112) and (113) still hold when (0, 0, 0) are replaced by (dij , d̃ij , χijbij).
Therefore, using straightforward power counting and applying Young’s inequality as shown in (99),

we may conclude that when k+` ≥ 3, there exits some constants K = K(p) > 0 and δ = δ(εa, εb, εd) > 0,
such that

|(J1)ij,k`| .
1ψij=0

N2

(
(logN)−KEΨ

[
F2p(dij , d̃ij , χijbij)

]
+N−δp

)
+

1ψij=0(1− 1i∈Tr,j∈Tc)

N2−εd

(
(logN)−KEΨ

[
F2p(dij , d̃ij , χijbij)

]
+N−δp

)
. (114)
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Case 2: k + ` = 1. Recall from (109) that

(T1)ij,k`,nq =

s4∑
r=0

s5∑
s=0

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

q+r+sEij
s!r!q!m!(`−m)!

]
× EΨ

[
g

(k,q)
(ij) (0, 0)C0,(r)

n,m F
(0,0,s)
2p−1−n(0, 0, 0)

]
· 1ψij=0 +O(N−εbp).

Case 2.1: q + r + s is odd. In this case, we can directly compute that

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

q+r+sEij
s!r!q!m!(`−m)!

]
= EΨ

[γ((1− χij)a2
ij − tw2

ij)(χijbij)
q+r+s

s!r!q!

]
= 0.

Thus, we have (T1)ij,k`,nq = O(N−εbp) in this case .
Case 2.2: q+r+s ≥ 0 is even. Using (87) and the simple facts that χij(1−χij) = 0 and E(b2ij) . N−1,

we have

∑̀
m=0

EΨ

[dk+m
ij d̃`−mij (χijbij)

q+r+sEij
s!r!q!m!(`−m)!

]
=

−γt1/2

(1− γ2)1/2
EΨ

[dijwij(χijbij)q+r+s
s!r!q!

]
=

t

N2

(
O
( 1q+r+s≥2

N (q+r+s−2)εb

)
+O

(1q+r+s=0

N εb

))
.

Further using (105) and (106), we can obtain that

(T1)ij,k`,nq =

s4∑
r=0

s5∑
s=0

t

N2

(
O
( 1q+r+s≥2

N (q+r+s−2)εb

)
+O

(1q+r+s=0

N εb

))
× EΨ

[
O≺
( 1

(Nη1q+r≥1 + 1q+r=0)t3(q+r)t3ij

)
F

(0,0,s)
2p−1−n(0, 0, 0)

]
1ψij=0 +O(N−εbp).

Observing that the above equation has a similar form to (110), we may proceed in a similar manner as
in Case 1 to estimate (T1)ij,k`,nq. We will omit the repetitive details for brevity. Consequently, we can
conclude that, by possibly adjusting the constants, (114) also holds when k + ` = 1.

Combining Case 1, Case 2, and the estimates for (J2)ij ’s, we arrive at

∑
i,j

|(I)ij | .
1ψij=1

N1−εα

∑
i,j

(
(logN)

2p
1−2pEΨ

[
F2p(eij , ẽij , cij)

]
+N−εαp/2

)
+
∑
i,j

1ψij=0

N2

(
(logN)−KEΨ

[
F2p(dij , d̃ij , χijbij)

]
+N−δp

)
+
∑
i,j

1ψij=0(1− 1i∈Tr,j∈Tc)

N2−εd

(
(logN)−KEΨ

[
F2p(dij , d̃ij , χijbij)

]
+N−δp

)
. (logN)−(K∧ 2p

2p−1 )EΨ

[∣∣Nη(Immγ(z)− Im m̃0(z)
)∣∣2p]+N−δ̃p,

where δ̃ = δ̃(εa, εb, εd) > 0. Therefore, for any 0 ≤ γ ≤ 1,

EΨ

(∣∣Nη(Immγ(zt)− Im m̃0(zt)
)∣∣2p)− EΨ

(∣∣Nη(Imm0(zt)− Im m̃0(zt)
)∣∣2p)

=

∫ γ

0

∂E
(∣∣Nη(Immγ′(zt)− Im m̃0(zt)

)∣∣2p)
∂γ′

dγ′. (115)
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Taking supremum over γ, and using the estimates above, we have

sup
0≤γ≤1

EΨ

(∣∣Nη(Immγ(zt)− Im m̃0(zt)
)∣∣2p)− EΨ

(∣∣Nη(Imm0(zt)− Im m̃0(zt)
)∣∣2p)

. (logN)−(K∧ 2p
2p−1 ) sup

0≤γ≤1
EΨ

[∣∣Nη(Immγ(zt)− Im m̃0(zt)
)∣∣2p]+N−δ̃p. (116)

The claim now follows by rearranging the terms.

5.5 Proof of Theorem 4.5

The proof of Theorem 4.5 is essentially the same as Theorem 4.3. We outline the proof here while the
detailed proof can be found in [11].

Using the same notation as in the proof of Theorem 4.3 and further defining hγ,(ij)(λ, β) :=

η0

∑
a fγ,(aa),(ij)(λ, β) and H(ij)(λ, β) := F ′

(
hγ,(ij)(λ, β)

)
g(ij)(λ, β). Observe that

∂EΨ

(
F (Nη0Immγ(zt))

)
∂γ

= −2
(∑
i,j

(I1)ij − (I2)ij

)
,

where (I1)ij = EΨ

[
AijH(ij)([Y

γ ]ij , Xij)
]

and (I2)ij = γ(1 − γ2)−1/2t1/2EΨ

[
wijH(ij)([Y

γ ]ij , Xij)
]
. We

estimate them by considering the cases ψij = 1 and ψij = 0 separately. For (I2)ij , in both cases, we can
estimate it by Gaussian integration by part, which leads to

(I2)ij =
γt1/2

(1− γ2)1/2N

(
EΨ

[
∂wij

{
H(ij)(dij , χijbij)

}]
· 1ψij=0 + EΨ

[
∂wij

{
H(ij)(eij , cij)

}]
· 1ψij=1

)
.

The term involving 1ψij=1 can be estimated directly by the fact that t1/2N−1 ·
∑

i,j 1ψij=1 ∼ t1/2N−1 ·
N1−εα = o(1). Therefore, by the definition of dij , we have

(I2)ij ≈
γt

N
EΨ

[
∂dij

{
H(ij)(dij , χijbij)

}]
· 1ψij=0. (117)

For (I1)ij , we only need to consider the case ψij = χij = 0 since Aij1ψij=1 or χij=1 = 0. Using Taylor
expansion and the law of total expectation gives

(I1)ij ≈
∑
k

1

k!
EΨ[aijd

k
ij |χij = 0] · EΨ

[
∂kdij

{
H(ij)(dij , χijbij)

}
|χij = 0

]
· P(χij = 0) · 1ψij=0.

For even values of k, it holds that EΨ[aijd
k
ij |χij = 0] = 0. In the case where k ≥ 3, we have

EΨ[aijd
k
ij |χij = 0] ∼ N−2−ε for some small ε > 0, effectively compensating for the size of the summation∑

i,j . Consequently, we arrive at

(I1)ij ≈ EΨ[γa2
ij ]P(χij = 0) · EΨ

[
∂dij

{
H(ij)(dij , χijbij)

}
|χij = 0

]
· 1ψij=0. (118)

In view of (117) and (118), we can conclude the proof by leveraging the moment matching (87) and
exploiting the smallness of |EΨ

[
∂dij

{
H(ij)(dij , χijbij)

}]
− EΨ

[
∂dij

{
H(ij)(dij , χijbij)

}
|χij = 0

]
|.

Supplementary information. The remaining technical proofs are stated in the supplementary
material [11].
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[26] Erdős L, Yau HT (2017) A dynamical approach to random matrix theory, Courant Lecture Notes in Mathematics, vol 28.
Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI
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