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Abstract

This is a supplementary material for [2], “Phase transition for the smallest eigenvalue of covariance
matrices” .
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In this supplementary material, we shall give the proofs of the following results stated in [2]: Theorem
2.8, Lemma 2.9, Proposition 2.10, Lemma 3.2, Proposition 3.10, Lemma 5.1, and Corollary . We also
provide a remark on Theorem 2.11 in [2].

1 Proof of Lemma 2.9

Consider
="+ E)+in, |E|< N, N2B7%2<p<g,. (S.1.1)

Recall that
Vi = VIW + X,
where t = NE|A;;|%.

By the eigenvalue rigidity (the left edge analog of [6, Theorem 2.13)),
M (S(V)) — A_| < N72/3,

As an analog of Lemma 2.6,
A (S(Vh)) — ATP| < N2,

Thus,
ATP = A_ | < N72/3 4 N2 S N

We write
z={ 4+ AP =X )+ E}+in=(A_,+E')+in,
where B/ := E 4+ (A\™P — A_ ). Then, with high probability, there exists x € R such that

z=(\_i4r) +in, |k <2NTF, N7H37% <<y (S.1.2)

Then, the desired result directly follows from the lemma below. Define b; = b;(2) := 1+ cytmy(z). Then
we have (;(2) == 2b? — tby(1 — cp).



Lemma S.1.1. Let z as in (S.1.2). There exist constants ¢,C > 0 such that the following holds:
(i) For |k|+n < ct*(log N)~2¢,

Mr(XXT) —Re(y(z) > et?, Tm((z) > ctN~2/37¢2,

(ii) For |k| +n > ct?(log N)~2¢,
Im ¢ (2) > ct*(log N)~€.

Proof. This lemma is essentially a byprduct of Theorem 2.7 through some elementary calculations.
Comparing (;(A— ) and (,(z), it boils down to the size of my(A_ ;) — m(z). We shall rely on the square
root behavior of p;.

Case (1) || < 27. Notice that
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By the square-root behavior of p; near the left edge,
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Case (2) k > 2n. We need to estimate
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Due to the square-root decay,
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We also observe

L N Vlog(/)
—————— i (A)dA §/ ——dz < Vrlog(k/n).
A A=A A== 0 Va(

—t+n K'_x)

IfXxe A +Kk—nA_+2k], we have A — A_ ; ~ k, which implies

A R L )
_— /\d)\N/ ————dx < Vklog(k/n).
A t+K—n ‘)‘7)‘—,t”>‘72| ' 0 22 + n?

For X € [A_ ¢ + 2K, Ay 4],
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Case (3) k < —2n. By splitting [A_ ¢, Ay ¢] into [A_ ¢, A_; + |&]] and [A_; + |k|, A+ ], we find that
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Note [b¢(A_+)| = O(1) = |bs(2)| due to the fact that |m,(u)| < (¢tu])~'/2. Thus, for [s|+n < (log N)~“2,

1G(2) — (A )| < 2

By Lemma 2.6 and Lemma 3.2,
(1= AT = ReG(z) = (1= )ATP = Ap(S(X) + Aar(S(X)) = G(A- 1)) + Re [G(A-p)) = Gi(2)] ~ £,

Next, we consider the imaginary part of (;(z). Setting

VE+1n, k>0,
‘1)(“’77): m /4/<O,

VIEl+n’

we have Im (;(z) ~ n + t®(k,n), which gives the desired estimates on the imaginary part of (;(z).
O

2 Proof of Proposition 2.10

We estimate the size of G;;(X, ¢) only. We can bound G;;(X ', ¢) in a similar way. Define H :== X/\/1 —¢
and denote w := /(1 —t). It is enough to find a constant ¢ = ¢(eg, €4, €5) such that

|G (H,w) = 6ijmmp(w)] < N~ jer, +t72(1 = 1 jeT,).

This can be proved by a minor modication of [11, Section 6]. In light of Lemma 2.6, the following two
lemmas are trivial. We may use the rigidiy estimate, Lemma 2.6, to get Lemma S.2.2 below.

Lemma S.2.1 (Crude bound using the imaginary part). Consider w=FE +ine€ Cy. Ifn > C,
|G (H,w)| < C1

Lemma S.2.2 (Crude bound on the domain D¢). Let D¢ = D¢(co, Co) be as in Eq. (31). Let { € De.
Denote w = (/(1 —t). Then with high probability,

|Gij(H,w)| S (log N)“ot=2,

Let us write H = (h;;). By Schur complement,

1
w+ LSV Gu(HO)T,w) + Z;

where we denote by H() the matrix obtained from H by removing i-th row and
N
Zi=w 15;@ hihuGra(H) T, w) = = kz_l Crn((HD)T,w).
We define Ag(w), Ao(w) and A(w) by

Ad(w) = max |Gy (H, w) = mmp(w)], Ao(w) = max |Gij(H,w)|, Aw) = |mp(w)— mmp(w)|-
1,jE€T,



For w = F + in, we define

O =d(w) = \/Im mmpg‘;}’) TAW 4 ay—carz g2y,
n

Define the events Q(w, K), B(w) and I'(w, K) for K > 0 by

Ow, K) = { max (Ao(w), max | Giu () — mi ()], max |Zi(w)|) > K<I>},

1€y

B(w) = {Ao(w) + Ag(w) > (log N)7'},  T(w, K) = Q(w, K) U B(w).
We also introduce the logarithmic factor ¢ = ¢y = (log N)loslog N,
Lemma S.2.3. Suppose U is good. Recall w = w(¢) = /(1 —t). There exist a constant C > 0 such that

the event
[ Tlw, %)
¢eDe

holds with high probability.

Proof. By a standard lattice argument, it is enough to show that I'(w,®) holds with with high
probability for any w = w(({) with ¢ € D¢. Fix w = w(({) with { € D.. We define

Qo(w, K) = {Ag(w) > Kd(w)},
Qw, K) = {ggagwu(mw) —ma ()] = Kow)},
Qy(w, K) = {?é;%(w > K(I)(w)}.

Since 0 = Q, UQy UQz, it is sufficient to show Qf U B, Q5 U B and Q2% U B hold with high probability
respectively.

(1) Consider the event Q¢ U B. Fix i # j with ¢,5 € 7. On the event B¢, we have |G;;(H, ()| ~ 1. Then,
by the resolvent identity,

Gji(H, w)Gij (H, w)

G; (H() w)=G,j(H,w)— i (H,w) ;

(S.2.2)

it follows that G;;(H",w) ~ 1 on B®. Thus, we can get

Ao(w) S max Z hlkhﬂle(( )va) )

i#j
i €T, |1<kISN

where we denote by H(“) the matrix obtained from H by removing i-th and j-th rows. Since 4,5 € 7y,
applying the large deviation estimate [1, Corollary 25], the following estimate holds with high probability:

1/2
S hahiGal(H)T )| < o€ | N7 max|Gua ()T (ZIGM (HO)T >)
1<k,I<N
Note that T
y I H\WY
S G (HYN)T w)? = 2. 1 G () ’w)7 (S.2.3)
n
and o)
ZJ) _ (i5) —
ZGkk , W) ;Ga(H , W) o (S.2.4)



Using (S.2.2), (S.2.3) and (S.2.4), together with Lemma S.2.2, we conclude that on the event B¢, with
high probability, for some constant C' > 0 large enough,

Immpp, + A+ A2+t 4N—¢ca 1
Ao < »° t72N7€b mp o -
(w)<e¢ < +\/ N + N> ,

with high probability for some constant C' > 0 large enough. The event Q¢ N B holds with high
probability.

(2) We claim that Q% U B holds with high probability. In fact, the claim directly follows from the large
deviation estimate [1, Corollary 25] repeating the same argument we used above; on the event B¢, for
i € T, we have | Z;| < ¢©® with high probability for some constant C' > 0.

(3) We shall prove Q5 U B holds with high probability. For i € 7y,

Gii(H,w) — mp(w) < Hé%g( |Gii(H,w) — Gj;(H,w)| + @Ot 2N,
.7 s

where we use Lemma S.2.2 to bound G;; with j ¢ 7,. For i,j € 7, with ¢ # j, on the event B¢, with
high probability, we can find that
1 1
Wt £ i Cr(HOT )+ Zi - w+ % 30, Cru(HO)T,w) + Z;
S max |Z;| + A+ IV
ASYES

|Gii(H,w) — Gjj(H,w)| <

where we use
_ M-N+1

- (S.2.5)

Z Gkk((H(l))T7 LU) - Z GKZ(H(i)7w)
k [
and the estimates we have shown above. The desired result follows. O

Corollary S.2.4. Suppose ¥ is good. Let C' > 0 be a constant. There exist a constant C > 0 such that
the event Q°(E +in, %) holds with high probability.

Proof. Recall the argument we used in the proof of the previous lemma. Using the large deviation estimate
[1, Corollary 25] with Lemma S.2.1, it is straightforward that Q¢ and Q¢ hold with high probability. For
24, the desired result follows from the consequence of Cauchy’s interlacing theorem, that is,

N N
1 ; 1 ) 1
— E HONT _ = E HONT < -
N Pt Gkk(( ) ,W) N Pt Gkk(( ) 7(&)) ~ NT]

Let us introduce the deviance function D(u(w),w) by setting

D)) = ( 5+ exan(w) ) = (s + enommg(e) ).

Lemma S.2.5. On the event I'(w, %),
[D(my (w),w)| < O(p*“ @) + 0ol p (o).

Proof. Recall that (mmp) ' (w) = —w + (1 — cn) — wenMpmp. Using (S.2.1), (S.2.2) and (S.2.5), on the
event Q¢ N B°, we have

G Y H,w) = (Mmp) ™M (W) + wen (Mmp(w) — mp (W) — Z; + O(p* @2 4t 4N~ 4 N1,

22



so it follows that
myt (w) — G (H,w) = D(mp(w),w) + Zi + O(p*“®* + "N~ 4+ N 1),

(23

Averaging over i € 7, yields

= Z (mﬁl(w) - Gi_il(va)) = D(mg(w),w) + ﬁ Z Z; + O(<p20<1>2 +t7ANT L N7,

I7:] €T, €T,
Since ), Gy (H,w) — mpg(w) = 0 and
1 _1 N Gii(H,w) — mH(w) (G“(H7W) — mH(w))2 (G“(Hm}) — mH(w))3
my (w) — Gy (H,w) = m2, (w) - m3 (w) + O( mi(w) )’

we obtain that |D(my(w),w)| < O(p?*“®?) on the event Q° N B, O
Lemma S.2.6. Recallw =w(¢) = (/(1 —t) and write w = E +1in. Let C,C’" > 0 be constants. Consider

an event A such that
Ac (| Twe9)n () B(w).
¢eD¢ ¢eD¢,m=C"

Suppose that in A, for w = w({) with { € D¢,
|D(mp (w),w)| <3(w) + 0ol gy,

where 0 : C — Ry is a continuous function such that 0(E +in) is decreasing in n and |[0(z)] < (log N)~8.
Then, for all w = w(() with ¢ € D¢, we have

0(¢)
VIE =T 47 4+2(0)

in A, (5.2.6)

M (w) = Mmp(w)| < log N

and

Ac () BYQ. (S.2.7)

¢eD¢

Proof. We follow the proof of [11, Lemma 6.12]. Denote w = w(¢) = E +in with ¢ € D.. For each E, we
define

Ip = {n:A(E+in) + Ag(E +in') < (log N)~! for all o/ > 5 such that (1 —¢t) - (E +in’) € D¢}.
Let m; and mg be two solutions of equation D(m(w),w) = 0(w). On B¢(w), by assumption, we have
ID(m (), )] < 0(w).
Then, the estimate (S.2.6) immediately follows from the argument around [11, Eq. (6.45)-Eq. (6.46)].
Next, we will prove the second statement (S.2.7). Due to the case n = C’, we know Ig # () on A. Let
us argue by contradiction. Define
DPe={n:w=E+in,(1—t)-we D¢}

Assume Ig # Dg. Let g = inf Ig. For wg = E+ing, we have A, (wo)+Agq(wo) = (log N)~1. It also follows

Awo) < |5 D2 (GualH,wo) = mimp(w0)) | + |1 D7 (Gaa(H,0) = mimp(wo)|
ieT, igT

< (logN)~! 4+ % 2N < (log N)~L.



By the first statement we already proved, on the event A, we obtain
Afwo) S (log N)~>.

Since A, (wo)+Ag(wg) = (log N)~1, we have A C B°(wp) and thus, by the assumption for A, we conclude
that A,(wo) + Ag(wo) < (log N)~! on the event A, which makes a contradiction.
O

Proposition S.2.7. Recall w = w(¢) = /(1 —t) and write w = E + in. There exist a constant C > 0
such that the following event holds with high probability:

m {Ao(w) + Ag(w) < Pt 2(Ny) V2 417 3N"/2 3N~}
cen,

Proof. Consider the event

Ag = ) T(w,¢).
CeD¢
Also we set (for some constant C' > 1 and w = E + in)

A=4An () Bw).

¢eDg,n=C

By Lemma S.2.3 and Corollary S.2.4, the event A holds with high probability. Using Lemma S.2.2, we
observe that for w = w(¢) with ¢ € De,

B(w) < pt Y (Ny) V2 4t 2N"@/2 L TIN T,
Let us set

d(w) = O (7 (V) V2 4 £ 2N /2 2N
On the event A, for w = w(¢) with ¢ € D¢, by Lemma S.2.5 and Lemma S.2.6,

M) < 2

\IE = A"+ 7

Ac () Bw),

CeD¢

Also, by Lemma S.2.6,

which means the event A is contained in Q¢(w, %) for any w = w(¢) with ¢ € D¢. The bound for A, is
given by maxgeT. |Grr(H,w) — mp| + A. O

3 Proof of Theorem 2.8

Recall by = 1 + cytmy and ¢ = (i(2) = 2b7 — thy(1 — cn). We also set

Let us state a left edge analog of [6, Theorem 2.7].

Theorem S.3.1. Suppose that the assumptions in Theorem 2.8 hold. Then,

Imm 1 t7/2
—3 t
|Gij (Vi 2) = biGij (X, G (2))] < ¢ (“Nn +N77> TNz



and

Imm 1 t=7/2
T T -3 t
1Gij (V' 2) = (1 +1tmy )Gig (X 7, G(2))] <t ( N + NU) + Nijz

uniformly in z € D(e1,e9,e3). In addition,

Nn ' Np TN

Imm 1 t=7/2
T T - t
(V' G(Vi, 2))ij — (X T G(X, G(2))ig] <77 (\/ Ny T Nn) N2

uniformly in z € D(e1,€2,¢€3).

(G(Vi, 2)Vi)ij — (G(X, ()X )ij| <73 ( Im my 1 > +=7/2

and

Proof. Roughly speaking, the conclusion is a left edge analog of [6, Theorem 2.7]. The proof is nearly
the same, and thus we only highlight some differences. We first record the notations from [6, Section B
of Supplement]. Due to the rotationally invariant property of Gaussian matrix, we have

V=X +Viw £ 0. V,0], V, =X+ VW, (S.3.1)

where X is a diagonal matrix with diagonal entries being A\;(S(X))'/2,i € [M]. Recall the notations in
Lemma 5.2, and we briefly write R(z) = R(V, z) in this proof. By (S.3.1), to prove an entrywise local
law for R(V4, z), it suffices to prove an anisotropic local law for the resolvent R(z). We further define
the asymptotic limit of R(z) as

—(14+cntmy) _,1/2 X
z 2(1tentm)(14tm, ) ~XX T z(l+extm,)(1+tm,)-XX
II%(z) == %7 -1z —(1+tm,)

z(l-‘rcNtmt)(l-Q—tﬂt)—Xf(T z(1+cNtmt)(l+tmt)—XT)_(
We define the index sets
11 = {l,u- ,M}, Iy = {M—|—1,~-~ ,M—l—]V}7 1 :=T1Ul,.

In the sequel, we use the Latin letter i, j € Z;, Greek letters p,v € Zs, a,b € Z. For an 7 x 7 matrix A
and ¢,j € 77, we define the 2 X 2 minor as

A = (Azj‘ A;) ’

where i := i + M € T,. Moreover, for a € Z \ {i,4}, we denote

A’ia
A['L]a = (Aia) ) Aa[z] = (Aai7Au%-)

Let the error parameter ¥(z) be defined as follows,

Immy 1
U(z):= + —.

Instead of proving [6, Eq. (B.68) in Supplement|, which aims at bounding u' (II*(2)) ![R(2) —
1% (2)](I1*(2)) ~'v for any deterministic unit vector u,v € RM*N  we shall prove

t_7/2

lu" [R(2) — I%(2)]v| < t73W(2) + N

(S.3.2)



We remark here that in [6], it is assumed that all \;(S(X))’s are O(1). Under this assumption, adding
(I1%(2))~! is harmless. However, in our case, \;(S(X)) could diverge with N. Then, adding the (I1*(2))~*
factor which will blow up along with big \;(S(X)), will complicate the proof of the anisotropic law.
On the other hand, (S.3.2) is what we need anyway. Hence, we get rid of the (I1*(z))~! and adapt the
proof in [6] to our estimate (S.3.2). Without the (IT1%(z))~! factor, the R(z) and IT*(z) entries are well
controlled, and the remaining proof is nearly the same as [6].

We shall first prove an entrywise version of (S.3.2): for any a,b € Z,

+=7/2

[R(2) — 17 (2)]as| < 72U (2) + Nz

(S.3.3)
The derivation of (S.3.3) follows the same procedure as the proof of [6, Eq. (B.69) in Supplement]. This
proof primarily relies on Schur complement, the large deviation of quadratic forms of Gaussian vector,
and the fact that min; |\;(S(X)) — ¢(2)] > t2.

Then, for general u, v, analogous to [6, Eq. (B. 72) in Supplement], we have

t72

0T [R(2) — T ol < 4750(2) + s+ | S Ry
i#]
T T
Y wRew| 42 Y ufReu)
pnFv>2M+1 1€L,u>2M+1

Therefore, it suffices to prove the following high moment bounds, for any a € N,

3 t_7/2 2a
E Zu ]'R”]U[J]‘ (t \I/ )+7N1/2) ,
i#j

2a
.
E > uiRuu| <

nFv>2M+1

.
El Y upRuuu
1€L ,u>2M+1

t*7/2 2a
)

<t73\IJ(z) +

2a

t_7/2 2a
w7)

< (t‘3\11(z) +

The above estimates are proven using a polynomialization method outlined in [5, Section 5], with input
from the entrywise estimates (S.3.3) and resolvent expansion (cf. [6, Lemma B.2 in Supplement]). We
omit the details. O

Remark 1. Actually, the estimates in Theorem S.3.1 hold uniformly in z such that
Ay=07M2 S Rez A +070 Tmze (b4 (IRez =2 +Im=)"?) > N7 mz <97, (53.4)

for any ¥ > 0. We can observe that every z € D(ey,e90,e3) satisfies (S.3.4) if €4,€1,62 and 9 are
sufficiently small. Also note that by = O(1) and 1+ tm, = O(1) in the domain D(e1,e2,€3).

By Theorem S.3.1 and Lemma 2.9, it is enough to analyze G(X,() and G(X () with ¢ € D¢ in
order to get the desired result. This was be done in Proposition 2.10. Together with Proposition S.3.2
and Corollary S.3.3 below, we complete the proof of Theorem 2.8.

Proposition S.3.2. Suppose that the assumptions in Proposition 2.10 hold. The following estimates
hold with respect to the probability measure Py .
(i) If i € T,., we have
[G(X, )Xy < N™/2.
(i) If j € T., we have
[G(X, )Xyl < N™/2.



(iii) Otherwise, we have the crude bound
G, QX]y| < G OXIT S 2

Proof. Using Proposition 2.10, it follows from Proposition S.3.4 below. [

With the above bounds, we can further improve the bound of the off-diagonal Green function entries
when ¢ or j is typical index.

Corollary S.3.3. Suppose that the assumptions in Proposition 2.10 hold. The following estimates hold
with respect to the probability measure Py .
(i) If i £ j and i € T, (or j € T;.), there exists a constant 6 = §(€q, €a, €p) > 0 such that
|Gis (X, Ol < N7°.
(i) Ifi#j and i € T (or j € Tc), there exists a constant 6 = 0(€q, €, €p) > 0 such that

IGij(XT, Q)| < N7°.

Proof of Corollary S.3.3. We shall give the proof only for the case ¢ # j and 7 € 7,.. The other cases can
be proved in the same way. Assume i # j and 7 € 7., observe that

|Gi(X, )l = |Gii(X, ¢l szkem Ozl

where we denote by X () the matrix obtained from X by removing i-th row. Note that
ZGM (XN, Oz = [GUXD)T, OX D) T
Since i € T, we apply the large deviation estimates in [1, Corollary 25] to bound

Zm GX)T,OX )Ty

)

where we also use Proposition S.3.4 below to get a high probability bound for [|G((X )T, O)(X@)T|. O

Proposition S.3.4. Let ( =F +ine C,.
(i) If i € T, we have

) mG. \T 1/2
I[G(X, ) X]iz| < (Nebm]?x|ij((X(l))T7<)|+<I G”(](\i; ) ,C)> >

. m (2) 1/2
><<1+|<-|Gii<X7<>|-(N-Eb%xakl<<x<”>ic> (Zatn ) ) ))

N2

where we denote by X @ the matriz obtained from X by removing i-th row.
(i) If j € Tc, we have

) (v 1/2
[G(X,0) Xy < (zv% ma |Gy (XU, 0) + (W) )

10



. Tm G (X1, )\ /2
x<1+|<|-|ij<XT,<>~<Nebngx|ckl<xm,o|+(zk ) ))

where we denote by XUl the matriz obtained from X by removing j-th column.
(iii) Let X = UDV be a singular value decomposition of X where

diag(D) = (drda -+ ,dy) = (VAUSX)), VRS, -+, VAu(S(X)) ).
(Here we also assume M < N without loss of generality.) Then,

3

7|

Proof. (i) Assume i € ;. Note that G(X,()X = XG(X ",(). Let z(;, be the i-th row of X. See that

IG(X, Q)X < max

1<i<p

XTX (= (XD)TXOD ¢ talyzg.
By the Sherman-Morrison formula,

L+ 2, GXO)T, Ozl

G(XTaC) = G((X(l))—r7<) -

. -1 ;
G(XT.0) = GIX)T,0) + ((Gu(X.0) - GIX)T, Qufyz GIX )T, Q).
We write [XG(XT, C)]” = .T(Z)G(XT, Oej. Then,
2o G(XT,Q)ej = 2 G((XD)T,Oe; + (CGia(X, 0)) - (2 GUX D) T, QJaly) - (2 GUXD)T, C)ey).
Since i € T, by the large deviation estimate [1, Corollary 25], the desired result follows.
(ii) Assume j € T.. Let 2(; be j-th column of X. See that
By the Sherman-Morrison formula,
G(X,0) = G(XV, )+ (¢Gj;(XT,0) - GX, Qapyyay G(XV), ),
where we denote by X! the matrix obtained from X by removing j-th column. Then,
ei G(X, Q) = ] GXV, Q) + (CG3(XT,0)) - (ef GXW, Q) -y GXVL, Qayy).
Using j € 7., we get the desired result using the large deviation estimate [1, Corollary 25].

(iii) This is elementary, and thus we omit the details. O

4 Remark on Theorem 2.11

Theorem 2.11 is a version of [7, Theorem V.3] with respect to the left edge. The required modification
would be straightforward. Let us summarize the main idea of [7] as follows. Let B; (i = 1,--- , M) be

11



independent standard Brownian motions. We fix two time scales:

to=N"5t%0 ¢ = N-sto1, (S4.1)

where ¢ € (3 — 2, 3) and 0 < ¢1 < 5.

For time ¢t > 0, we define the process {\;(t) : 1 < i < M} as the unique strong solution to the
following system of SDEs:

dB; 1 i + )
d), = 22220 —Z LA, 1<i<M
7 N L . b - - b

VN j#i Ai = A

with initial data A;(0) = A; (7 S(Vi,)) where 7, is chosen to match the edge eigenvalue gaps of S(V4,)
with those of Wigner matrices. Recall the convention: Ay > Ao > -+ > Ay,
Note that the process {\;(t)} has the same joint distribution as the eigenvalues of the matrix

VS Vigr ) = (X + (yuto + )W) (12X + (yuto + ) /2W) T

Denote by py; the asymptotic spectral distribution of S(V;, +%) (in terms of the rectangular free con-
volution actually). Let Ex(t) be the left edge of py¢. Now we introduce a deforemd Wishart matrix
UUT . Define U == X'/2X where X is a M x N real Gaussian matrix (mean zero and variance N~!) and
Y = diag(o1,- - ,0m) is a diagonal population matrix. Let p, o be the asymptotic spectral distribution
of UUT (given by the multiplicative free convolution of the MP law and the ESD of ¥). We choose the
diagonal population covariance matrix ¥ such that p, o matches py o near the left edge E\(0) (square-
root behavior). We write 11;(0) == u;(UUT). Next, define the process {u;(t) : 1 <i < M} through the
rectangular DBM with initial data {u;(0)}. We can show that the edge eigenvalues of {u;(t)} are gov-
erned by the Tracy-Widom law. We denote by p, ; the rectangular free convolution of p, o with the
Marchenko-Pastur (MP) law at time t. Let E,,(¢) be the left edge of p,, ;. We remark that Ey(0) = E,(0).
Then, in order to get Theorem 2.11, it is enough to show

|(Anr(t1) = Ex(t1)) — (par(tr) — Ey(t))| < N72/379,

for § > 0 sufficiently small. The proof of the above estimate relies on the local equilibrium mechanism
of the rectangle DBM, which does not have any difference between the left edge or the right edge of the
spectrum, given 7,-regularities of the initial states. Hence, we omit the remaining argument, and refer
to [7] for details.

5 Proof of Lemma 3.2

We shall prove Lemma 3.2 in this section.

Proof of Lemma 8.2 (i). The proof is similar to that in [6], we provide proof here completeness. The
statement (_ ; — Ap(S(X)) < 0 follows directly from Lemma 3.1. For the other estimate, by Lemma 3.1,
we know that ®,(¢_ ) is the only local extrema of ®,(¢) on the interval (0, A\as(S(X))). Hence we have
®; (¢ +) =0, which gives the equation

(1 = entmx(C- 1)) = 2entm'x (C—p) - (- (1 — entmx (C-0)) — en (1 — en)tPm’x (- 1) = 0.
Rearranging the terms, we can get

(1 = entmx (¢ 1))?

tm'x ((—¢) = . S5.1
enmix(G-s) 20 (L= entmx (C-1)) + (1 —en)t (551

By Lemma 2.1 (iv) and Eq. (22), we have on Qg that
entmx (C ) = O?). (S.5.2)
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Plugging the above bound back to (S.5.1), we can get m/x(¢_ ;) ~ t~1. This together with Lemma 2.2
gives /A (S(X)) = ~ t. O

Proof of Lemma 3.2 (ii). Since S(X) is n,.-regular in the sense of Definition 1, the estimates for |mg?)(C)\
on the event Qg is an immediate consequence of Lemmas 2.2 and Lemma 3.2 (i).

We prove the estimate for |mx(z) — mgfz,(z)\ as follows. Recall that 8 = (a—2)/24. First, we establish
the convergence of Stieltjes transform of a truncated matrix model using the result in [9]. To this end,
let us define X = (Z;;) := (4j1,,,<n-s) and £ := 1 — NE|Z;;|%. It is easy to show that |f —¢] = o(N 1),
and thus we have |m,(Tf2,(zl) - m@p(zl)\ < (Nm1)~1. Then it follows from [9, Theorem 2.7] that for any 21
such that |21 — (_ 4| < 7t? and m =Im 2y > N~1%% with 1 > § > 0 to be chosen later,

1 1
mx(21) —mig)(21) < 55 + N (S.5.3)
We remark here that the local law proved in [9, Theorem 2.7] is for deterministic z. But it is easy to show
that the local law holds uniformly in z in the mentioned domain in [9, Theorem 2.7], with high probability,
by a simple continuity argument. Hence, as long as z; fall in this domain with high probability, even
though z; might be random, we still have (S.5.3). Using the facts [Ap(S(X)) — (1 = )A™P| S N~¢ and
Am(S(X)) — ¢+ ~ t? with high probability (cf. Lemmas 2.6 and 3.2 (i)), we have for 7 small enough,

21 = (1= )ATP] > [C—p = A (S(X))] = Par(S(X) = (1= )ATP| = |21 = (o 2 £,

which gives \(mr(,f,),)’(zlﬂ < t~* with high probability. Also, we have |m/c(z1)| < t~* with high probability,
by the choice of z1, Eq. (28), and Lemma 3.2 (i). Therefore, for any z5 satisfying Rezs = Rez; and

Ny = Imzy < N~'9 we have
i (22) — MO (29)|<|mx (1) — MO (z0)| 4 1421 — zal< e + 4 — 2 < L g5y
x (22 mp(22)|SImx (21 mp (1 -2yt yie Ay S N 5.

where in the first step we used the fact |z; —(_ ;| < 7¢2,i = 1,2, and in the second step we chose § = 1/2.
Next, we use the rank inequality to compare m ¢ (z) with mx (z). Notice that

2 - - _ _ Rank(X — X
mg(2) ~ mx(2) < SRank(X — X) - ((S(X) — 2)7 |+ [(S(X) ~ 2)7' ) < "L =)
A similar argument as in the proof of Lemma 2.3 shows that,

Rank(X — X) < N1-(a=2-205)/4

Therefore, we can obtain mg(z) — mx(z) < N~(@7272¢8)/44=2 Together with the estimate in (S.5.4),
we have

1 1

—_m® e T
mx (2) = myp(2) < N(a—2-2aB)/i2 = NB"

mp

The claim now follows by the fact ¢ > N@=®/16 in light of Eq. (3). O

Proof of Lemma 3.2 (iii). Repeating the proof of [6, Lemma A.2], we can obtain

Gt = Cotl S B (C-) = (MG (G- o).
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By the Cauchy integral formula, we have

(®)

me(C-) = (mfy) () f el @l (55.5)

where w = {a : |[a — (_ ¢| = 7t?} for some small 7. Therefore, we have by Lemma 3.2 (ii),

Gt = G

< tsup [mx () — m(a)] < LN,

acw

proving the claim. O

6 Proof of Proposition 3.10

In this section, we shall give the proof of Proposition 3.10.

Proof of Proposition 3.10. By a minor process argument, we have with probability at least 1 — N~ for
arbitrary large D, there exists constant Cj, > 0, such that

A (S(XP)) = G| = |(1 =A™ — s+ A (S(X W) = (1= AP +iN 1K 4 — e
> Vent? — Mar(S(X®)) — (1 = )A™| = |C_ s — (| = N7TI00K > 02, (S.6.1)

Here in the last step, we used Eq. (45) and the fact that [Ap(S(X®))) — (1 —¢)A™| < N~ Therefore,
for any k € [N], we can define the event Q = { A\ (S(X®))) = ¢_; > Cpt?} with P(Q) >1— NP for
arbitrary large D.

Choosing 7 < miny, C /2. For any ( satisfying |¢ — CAe| < 71t%, we define

Fi(¢) = log |1+ & (G(XW, ()&l Fi(C) :=log |1 + & (GX™, () diagrl”.

Since |)\M(§()~((k))) - = |/\M(5~()~((k))) —C| = ¢ = C] > Crt?/2 > 0 on Q, we can obtain that
Re (&} (G(X® ())Z1)VRe (2] (G(X® () diag®h) > 0. Hence, the functions Fy,(¢), Fi.(¢) are well defined
on the event Q. For any ¢ € Z(7), using Cauchy integral formula with a cutoff of the contour chosen

carefully, we can express Yy = Y;(() as

Yk = th*a/‘l(ﬂzk — Ekfl) j{)mv (fk_(z))2dz + errk(C) = Ik(C) -+ errk(C),

with the contour w = {z € C: |z — (| = 7t*/10} and v = {z € C : [Im 2| > N7}, and err; collects all
the tiny error terms which will not affect our further analysis. Similarly, we can define I;,(¢) and e¥ry(()
for Yj in the same manner as shown above. Therefore,

Er1(YaYy) — Exo1 (ViYy) = Er1 (I(O) 1k (¢)) — Bt (I1(Q) Ik (¢')) + HOT,
where HOT collects terms containing errg(¢) or efrg(¢), which are irrelevant in our analysis. For the

leading term, since Fj(2), Fi(2),Fi(2),F)(2') are uniformly bounded on z € w N~y and 2’ € w' N7, we
may commute the conditional expectation and the integral to obtain

= = 2 z2,2") — @r(z, 2
B (IO = B (RO = = gzza73 i ¢ . @é;(_’ <))2 (Zjoi( C;)Q)dz’dz, (5.6.2)

where

@k(z, Z/) = Ek—l((Ek — Ek_l)Fk(Z)(]Ek — Ek_l)Fk(Z,))
g?:k(z7 ZI) = ]Ek,1 ((]Ek — Ek,l)ﬁ‘k(z)(Ek - Ek,l)ﬁ’k(z/)),
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and W' = {2z € C: |z — ¢'| = at?} with a small constant a.

In view of (S.6.2), it suffices to prove that uniformly on z € wN~y and 2’ € W' N7y, Yr — G =
o(z,2") — Pr(z,2') < t2N'=%/2 In the sequel, we write Fy = Fi(2), Fr = Fi(z), F}, = Fi(2'), and
F} = Fy(2") for simplicity. Let

e =mk(2) = 3 (GXW, 2) 3 — 3 (GXD, 2))aiagn = Y _[GX®), 2)]i5 8k,
i#

and
e = ek(2) i= Fi — Fi = log |1+ (1 + 2] (G(X® 2))diag@r) "2
We also write n;, = ni(2') and €}, = €x(2"). Using the following elementary identity,

Er—1((Ex — Ex—1)(A)(Ex — Ex—1)(B)) = Ep—1(Ex(A)Ex(B)) — Ex—1(A)Ex—_1(B),
we may rewrite ¢y and @y as

o = Epo1 (B (Fr)Ex(FR)) — Ep—1 (Fi)Er—1(Fy),

G = Eim1 (Bx(Fi)Er(F})) — Ep— (F)Ep—1 (F}).

Therefore, let E;, denote the expectation with respect to the randomness of k-th column of X, we have
by the definitions of e, €/,

or — &k = Bz, (Br(Fr)Ex(e})) + Es, (Br(F})Ex(ex)) + Ez, (Ex(er)Ex(c}))
— EvEs, (Fy)EiEz, (¢},) — BxEz, (F{)EEq, (ex) — ExEaz, (¢})ExEz, (ek)
=N+ T+ T5+Ty+T5 + T

Before bounding T;’s, 1 < i < 6, we introduce some shorthand notation for simplicity. Let

1 1

Jg = Ji(2) = > 7Jia:<] iag(%) = = 5
T e e T e ) T TG, ) i

and Jy, = Ji(2'), J}. giag = Jk,diag(?"). Further set

1
1+ %TrG(X(k), 2)

2
~ b ~ g S
Jemy = , E =i} (G(X® 2))diaglr — —&V TrGX ™ 2).

This gives Ji diag = Jk, v — €Ik, Tr Ik, diag- We may now establish an upper bound for E;, (¢4) as follows:
o M) 2
Ez, (ex) = Ez, log |1 + neJr diag|” < log Ez, |1 + i Jk,diag]
=logEz, (1 + 2Re (e k.1 — M BTk e Tk diag) + |75 Jk.diag]?)
(ii)
< log (1+ O(Ez, (InklI€])) + OEz, (Ink]?))),
where, in (i), Jensen’s inequality is applied, and in (ii), we used the fact that Ji 1, and Ji diag are

uniformly bounded for { € = on the event . Similarly, using the identity |1 + 75 Jk diag||1 — 76 Jk| = 1,
we have

Bz, (—er) = Ez, log|1 — neJi|* = Ez, log |1 — i Jeme — k(M + €) T aiag Ji |
<log (14 O(Ez, (Inkl|€])) + O(Ez, (In]?))).-

By the Cauchy-Schwarz inequality and Lemma S.6.1 and Lemma S.6.2,

Ez, (Inel|€]) < vEz, (nk[?) - Bz, (J€]7) § N™V22NPE=a2712)g(X W), )
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Since ¥ = 1/4+ 1/a+ €y > 1/4+1/a, and recall that ||G(X®), 2)|| < [M\(S(X®)) = 2|~ < 72 on Q,
the above bound can be further simplified as

Eik(mk”gD 5 Nl—a/2 . N2/a+3a/8+60(4_a)/2_2t_4.

By the facts ey < (3a — 5)/(4a) and t > N©@=9/48 it can be verified that Ez, (|ni||€]) < t2N1—/2,
Therefore, we can conclude that |Ez, (c1)| < t2N'~%/2. This shows |Ts| < t?N'~*/2. Together with the
crude bound Fj, < log|1 4+ N2?||G(X ™), 2)[||? < log N, we have |Ty],|Ts| < t2N1~2/2,

For |T3|, by Cauchy-Schwarz inequality, it suffices to give a bound on Ej, (|Ex(ex)|?). By Jensen’s
inequality,

Ez, (|Ex(ex)[*) < ExEs, (lexl?)-

Using again the identity |1 + 75 Jk diag||1 — n6Ji| = 1,
|log |1 + Nk Jk,diag|*] = L1t i aing 21} l0g |1 + Tk diag|® + 1i—nege|>1) log |1 — i)
= 1{|1+nka,diag|>1} log(l + 2Re (nka,diag) + |77ka,diag|2) + 1{|1—77ka|>1} log(l — 2Re (nka) + |77ka|2)

< L1 aingl > 1) (2R (0 Tk diag) + [0k Tk diag|”) + 11> 1y (= 2Re (i) + i)
Therefore, with the fact that |1 Jk, diag| < N€ for some C > 0,
Es, [10g [1 + 0k Jy, ding) *[> S log N - Bz, 10g |1 + i Jk diag|” S 10g N - Eay (|ni*) S N7H2%

which gives |T3| < t2N1=%/2 by the fact ¢t > N~2/T+a/14,
To evaluate |T|, we start by expressing it as follows:
T, = Ez, (Er(er)Ex(log |1 + N1oZ TrG(X ™, ') + £]%))
= Es, (Be(er)Er(log |1 + N o3 TrG(X W, 2')%)) + Eg, (Ex(ex)Ex(log |1+ EJe ).

First, we use the fact that log |1 + N‘la%\,TrG(f((k), z)|? is independent of 7 and that Ez, (x) = 0 to
obtain the inequality

Ty S Eg, (|Ex(er)] - Exl€]).
Next, we apply the Cauchy-Schwarz inequality to obtain

T, < /s, (Bk(er)|2) Es, (E(EDI2).

Finally, by Jensen’s inequality, we have

T, < \/EkEik(|€k|2)EkEik(\5|2) < N1-0/2, N2/at30/8te)(4-a)/2-2,-9/2,

The bound |Ty| < t2N'=/2 follows by the facts ey < (3a—5)/(4a) and t > N(@=4/56_ The same bound
holds for |T}|. Therefore, we can obtain that for any z € w N~y and 2’ € W' N7, |pp — Gr| < L2NT—/2,
which conludes the proof. O

Lemma S.6.1 ([4], Lemma 4.1). Let a = (a1, ,an)’ be a column wvector whose entries are
i.i.d. centered and satisfy (it) and (i) in Lemma 3.12. Then for deterministic matriz G, the random
variables

X = ZGijaiaj, E= Z G”af - %TI‘G
i#j %

satisfy

E[X[* <2N7'G|?,  E|E]® < 100(|G|* + )N~
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The following lemma is a directly consequence of Lemma S.6.1.

Lemma S.6.2. Fiz C > 0. For any ¢ € {¢ € C: |¢—(_ 4| < Ct?}, we have there exist constant T = 7(C)
such that Bz, (|nk)?) < 772N"1~* on the event Qi = {\(S(X®)) — ¢, > 712}

7 Proof of Lemma 5.1

We need the following lemma on the monotonicity of the Green function to the linearization of S(Y7).

Lemma S.7.1 ([3], Lemma 2.1). For deterministic matriz A € RM*N "let L(A) be defined as in Eq. (76)
Further define I'(z) = max; jeprsn)[(L(A) — 2)7i; V 1. We have for any L > 1 and z € C*, we have
[(E +in/L) < LU(E + ).

Recall that for any § >0, z = E+1in € D,

Po(0,2,0) =Py ( sup [21/2X4 [ ()| > N°),
a,be[M]
0<~y<1

PBi1(d,2,¥) = IED\II( sup |Zl/2muv[g7(2)]uv| > N(S)a
w,vE[N]
0<~y<1

Vo (5, 2, W) = m( e 130u[G7 (2)Y M| > N5>.
ac ,ue
0<y<1

Now let us give the proof of Lemma 5.1.

Proof of Lemma 5.1. Let p be any sufficiently large (but fixed) integer, and F,(z) := |z|?? + 1. It can

be easily verified that there exists a constant C),, only depends on p such that |F,§a) ()] < CpF,(x),
for all z € R and @ € Z*. Recall Theorem 4.2, and we will focus on the case when (#1,#2,#3) =
(XapIm [GY(2)]abs XapIm [GO(2)]ab, Jo.ap) therein. Applying Theorem 4.2 with F(z) = F,(z), we have
for any a,b € [M], there exists constant C; > 0 such that,

Ey (Fp(XapIm [G7(2)] b)) — By (Fp(XapIm [GO(2)]ap)) < CLN"(Tp0 + 1) + C1Qo N,

where Jp0 = sup; je(ar,0<y<1 Ew (|Fp(%ijlm [G’Y(z)]u)‘) Taking supremum over a,b € [M] and 0 < <
1 yields

(1= CiN"%)Jp0 < max Ey(F,(X;Im[G(2)];;)) + CiN~ + 3C1 N max Py (e, 2, ).
i,jE€[M] kel0:2]

Applying Lemma S.7.1 on R(Y7,2) = 2~ V2(L(Y") — 2'/2)~1 with 2'/2 = E +i7), we have,

2[R(Y i-\/1<L( N2IR (Y ’,v1)
s ROV (IR0, V1),

for any L > 0 and 2’ € C* satisfies (2/)'/2 = E +iLj. Let L = N°/¢ and thus (/)2 = E +iN</%7, to
obtain

/21 vl /21y vl G'(2)Y " <6
s (G V1 G Gl V1L (@Y < 6

where

— n7e/6 NL/217 (] .. NL/2107(/\]. . YNV
& = N*/0(max |(2)2167 ()| v mane [DVIGT Nl v max (G (Y )y V1),
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This implies that

) < 2.2 ). S.7.1
krg[%fg}m(e,z )_krél[gﬁ]%(s/ 2, W) ( )

For any zg = Eo+ino € D(e1, €2, €3), we have Ey (F,(X;;Im [G°(20)]i;)) S N (cf. Theorem 2.8). Then
there exists some large constant C; > 0 such that

JTpo < CaN + CyN©> krél[%:}g] Br(e, 20, V).

Using (S.7.1) by setting z = zp, we have for z; = Fy + in; where (Eq,n;) are defined through (73),

Jp0 < C2N + Co N Zax, Pr(e/2,21,P).

For any a,b € [M], and 0 < v < 1, applying Markov’s inequality with the fact that pd > D + 100, we
have that there exists some large constant C3 > 0 such that

< |20[P/*Eg (| Fp (X apIm [G7 (20)]a)]) < |21P/23,.0

- NPpd - N®

< CO3N~P=9 L 03N max Pr(e/2, 21, ),
ke[0:2]

Py (125 Xa0 [l G (20)]s| > N7

where in the last step we used the fact that |2¢| is bounded. Similar bound holds when Im is replaced
by Re, we omit the details. Now we may apply union bounds on i,j € [M] and an e-net argument on ~y
with the following deterministic bounds

< AL+ AW

)

’ I[G7 (2)]ab
Oy

n> N7 ||A]| < N2 and P(||t1/?W| > 2) < N~P| to obtain that

Po(d, 20, %) =Pu( sup |2/ Xa[G7 (20) | > N)
a,be[M]
0<~<1

< CuN~P70 4 C4Nt max Pi(e/2,21,9),
ke[0:2]

for some large constant Cy > 0. Repeating the above procedure for all P4 (0,7, ¥), k = 1,2 proves the
claim. O

8 Proof of Corollary

We prove this corollary using a similar argument as in [Section 4, [11]] or [Section 4, [8]]. The key inputs
are the rigidity estimate in Theorem 4.4 and the Green function comparison in Theorem 4.5.

Proof of Corollary . Let us first define for any F,
N(E) = |{i: M(S(Y)) < A_: + E}|.

For any ¢ > 0, we take £ = N~2/37¢/3 and 5 = N~2/3-¢. Recall from Theorem 4.4 that A\ (S(Y)) >
A_; — N72/3%¢ holds with high probability. We further define

XE(.%) = 1[—N—2/3+€,E] (:c - A-i)’

n 1 1
0 =——=-=1 .
n(@) (@2 4+n?) 7 - in
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Then following the same arguments as in [Lemma 2.7, [10]], we can obtain that for |E| < N=2/3+¢ the
following holds with high probability:

Tr(x—s #0,)(S(Y)) = N2 < N(E) < Te(xme + 0,) (S(V)) + N/,
Let K(z) : R — [0,1] be a smooth monotonic increasing function such that
K(x)=1 if 2>2/3, K(x)=0 if =<1/3.
Therefore, we have with high probability that

K(Tr(xp—e * 0,)(S(Y)) + O(N~7%) < KW(E)) = (s>t
< K(Tr(xpe * 6,)(S(Y))) + ON~).

Taking expectation on the above inequality, we have for |s| < N¢/2 that

N sN™2/3_¢
K(Im [ / m'(\_e+y+ in)] dy)

T J_N-2/3+e

E + O(N~/?)

< P(N2/3(AM(S(Y)) “A)<s) = E[1N(SN,2/3)21}

N sN72/3+€
K<Im {/ m'(A_ i +y+ in)]dy>

T J_N-2/3+€

<E + O(N~</9). (S.8.1)

Similarly, repeating the above arguments with S(Y') replaced by S(V;), we can also have

N sN~2/3_¢
K(Im [ / m(A_ +y+ in)] dy)

T J_N-2/3+e

E + O(N~/?)

<B(NP(Anr(S(Vi) = ) < 5)

N sN=2/3 4y
K<Im {/ m’(A_ +y+ in)]dy>

T J_N-2/3+€

<E +O(N~9). (S.8.2)

Note that the conditional expectation Ey in (68) can be replaced by E using the law of total expectation
together with the fact that Qg holds with high probability. Therefore, we can combine (S.8.1) and (S.8.2)
with (68) to obtain that

IP’(NZ/3()\M(8(W)) — A <s— 2€N*2/3> +ONT) < P(N2/3(AM(S(Y)) — M) < s)
< ]P’(NQ/?’(/\M(S(V;)) AL <s+ 2€N_2/3) +O(N~/9).
Now (69) follows by the fact that £N~2/3 < 1. For (70), we first note by Theorem 2.12 that
A=t — Ashire| < N—2/3+¢ (S.8.3)
holds in probability. This together with Theorem 4.4 implies that
A (S(Y) = Ashir| < N72/3%¢
also holds in probability. Then we may proceed similar to the proof of (69), but with all high probability
estimates replaced by in probability estimates. It’s worth noting that during the derivation of (S.8.1) and

(S.8.2), the error term O(N~¢?) will become 0(1) because we lack an polynomial bound for the failure
probability of (S.8.3). Finally, we can conclude the proof of (70) by using Theorem 4.5. O
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9 Proof of Theorem 4.5

Proof. To ease presentation, we show the proof of the following comparison instead: for any |E| <
‘]\[72/3+e7

‘Eq, (F(Nnolmml()\,,t Y B+ ino))> ~Ey <F(N7701m MmOy + B+ 1n0))) ‘ <ON™O. (S9.1)

The proof of (68) is similar, and thus we omit it. Using the same notation as in the proof of Theorem
4.3 and further defining A (;;)(\, 8) = 10 Y, fy.(aa).ij) (A5 B), we have

Oy (F(Nn;flymm'y(zt))) = —2( X0y~ (B)y).

i,J

with
(I)i; =Eg {Asz’ (h'y,(ij) (Y )i Xij))g(ij) (Y35 Xij):| ,
t1/2
(DR - IV [ww‘F’ (ot (Y113 X25) ) 93 (I s Xz'j)] :

We first consider the estimation for (I1),;. Notice that (/1);; can be further decomposed as

(I2)ij =

(I1)ij = (I1)ij - Lyyy=0 + (I1)ij - Ly ;=1 = (11)ij - Ly, =0,

where in the last step we used the fact that A;; - 1y,=1=0. Therefore, we only need to consider the
case when ;; =0, and (I;);; can be rewritten as

(L)i;j =Ey¢ {(1 — Xij)ai; F' (hw,(ij)(dijaXijbij))g(ij)(dijvXijbij):| “1y,.=0-

By Taylor expansion, for an s; > 0 to be chosen later, there exists cL-j € [0, d;;] such that,

S1
1 ky (k1,0
()i =) i [(1 — Xij)aidf g(1 )(0»Xijbij)F/(hv,(z'ﬁ(dijvXz‘jbz‘j))} “Lyi;=0
k1=0
1 s s141,0), 7
+ WE\P [(1 - Xij)aijdi;JrlgEijl;_ )(dijaXijbij)F/(h'y,(ij)(dijvXijbij)):| “1y,=0

s1
= Z (Il)ij,kl + Reml.
k?1:0

Using (96)-(98), ,the perturbation argument as in (80), and the fact that Im m?(z;) < 1, we have for any
(small)e > 0 and (large)D > 0,

Py <Qe,1 = {|g§f;)+1’0)(dij7Xijbij)F/(hw,(ij)(dijaXijbij))} “1y,=0 < tsl2N€}> >1- NP,
Further, by the Gaussianity of w;;, we have

]P)q; (Qe’g = { max |t1/2wij| < N1/2+6}) 2 1-— NﬁD.
i€[M],j€[N]

Let Q¢ := Q¢ 1 N Q2. Then

s s1+1,0) /7
|Rem;| S Ey [|(1 = xi)aigdi T gt (digy xigbig ) F (ogig) (dis Xagin)) | - Ta | - y,=0
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S s1+1,0) , 7
+Ey [l(1 = Xip)aigds T - [l O (i xasbig ) F (R i) (i Xaghi)) |- 192} “Ly=0

(i) s 11.0), 3
S Eg [|(1 - Xij)aijdi}+1| : |géfj)+ ' )(dij>Xijbij)F/(hw,(ij)(dijaXijbij))} : 195} “1y,=0
4 N7D+C1+2(Sl+3)

(2) Ne€
~ N1/2+€b(51+1)t51+2 ’

(S.9.2)

where in (i) we used the deterministic bound |g§j;)“*°>(dij, Xijij ) F' (i) (i Xijbij)>| < NC1+2(s143)
when n > N~2, and (ii) is a consequence of the definition of .. Choosing s; sufficiently large, i.e.,
s1 > 4/ep, and t > N~—/2 we can obtain

|Remy| < N79/2,
For (I1)ij .k, , we need to further expand F’(h, ;) (di;)) as follows:

52 dfj OF F st gk

F'(hy (i) (dig, xigbig)) = ﬁW(h%(ij)(Oinjbij)) + ﬁw(h%(ij)(diﬁ)(ijbij))a
k=0 " 9% Oy

where ss is a positive integer to be chosen later, and ciij € [0,d;j]. Then (I1);%, can be rewritten as,

8k2 F/
k
ad;?
852+1F1
so+1
ad:?

=1 k1,0
(I)ijga = ) WE\I’ {(1 - Xij)aijdfj-l+kzggi]-l)’ (0, x1;bi5)

(h”%(ij)(oa Xl]bl])):| . 1¢,ij:0
ko=0

1 sat1 (k1,0
B [(1 — Xij)ai;dy; * 2+19((i]-1) (0, x:5bi5)

Y hey (i Cii', zbz -1y —
+ k1!(82+1) ( ’77(7'])( J X] ])):| "Z"z] 0

52
= Z (Il)ij,klkg + Rems.
ka=0
By Faa di Bruno’s formula, we have for any integer n > 0,

S (i b)) = L plmemat)
oar (i (dugs xisbia)) = D oy (

(m17"'7m71)
n h(z)u (d“ X”b”) my
v, (i) {432 XigOig
< [1 ( i ) (S.9.3)
=1

(i) (digs Xigbig))

Considering (S.9.3), (96)-(98), and using the perturbation argument as described in (80), we arrive at
the following result:

852+1F/

W(h%(ij)(dij,xl-jbij)) < [ < (S.9.4)
ij

=1
Moreover, taking into account the fact that gg’;))(O) <t~ (141 we can deduce that:

N€
< < N75/2
‘Rem2| ~ N1/2+65(k1+82+1)tk}1+2(52+1) ~ N ’

where, for the final step, we have chosen s2 > 4/¢, and ¢ > N—e/4 Next, we estimate (11)ij, k1 ks In
different cases.
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Case 1: k1 + ko is even. By the law of total expectation,

(Il)ij;klkz

Ly.=0 k0 ko
= ik ZE“J = Xij) azadk1+k29§”) (0, xi50i7) - (P i) (0, X3555)) [ x5 = | P(xij = m)
kilky! £= od;:
- Ly—0 b1tz g (51 0) "= F _ _
= kl']kzg Ey [a”d 29igy (0,0)——— 0T (hy,(i7)(0,0)) | xij = O|P(xs; = 0)
1y,=0=0 +k k1.0 ok2 F’
_ 7];1%2! Eg [a”d ] - 0] EQ{ gm )(0,0)=—— o (hey,(i)(0,0)) | P(xi; = 0), (S.9.5)

where the last step follows from the symmetry condition.
Case 2: k1 + ko is odd and ky + ko > 5. Similar to (S.9.5), we have

akz F/
od;?

1 (k1,0) oF2 F’
S N2+2ea+(k1+k2—3)ep, Ey |:|g(ij1) (0, xi5045)| 48dl-€-2 (h%(ij)(onijbij)) Ly;=0,xi;=0-
i

Xij = 0] ’]Eq; [|9§fjl)’0)(0, 0)|‘

[(11)ij krks] S (h'y,(ij)(ovo))’ Xij = 0] P(xi; = 0)1y,;=0

Eg |:a” dkl +ko

We may again obtain the bound |g(k1)(0, Xijbii)| Ly, =0,xs;=0 < t~*1+D) by (96)-(98), and the perturba-
tion argument as described in (80). Usmg (1)equation (S.9.3) with d;; replaced by 0, and (ii)the following
rank inequality,

,dij
[y (0, Xi3bi3) = By i) (digs Xighig)| - Loi=0,xi,=0 < 2m0 (IG5 (o)l + 1G53 (z)ll) L y=0,xi5=0 < 2,

(S.9.6)
with the fact that h. ;) (dij, Xijbij) - Ly,;=0,x;;=0 < 1, we can obtain that
ok F' _
e (i) (0 xigbig)) | Loy =0ixy=0 < ¢ e (5:9.7)
ij

Combining the above estimates and choosing t > N /8, we arrive at

N¢ 1
|(11)ijkika | S S :
WhrIR2 L o Ar242e,+ (k1 k2 —3)ep phi+142ks ~ N 2+2¢,

Case 3: ki + ko = 3. The estimation in this case is similar to Case 2 above, but we need to use the

bound g((kl)’o) (0,xi5bij) < 1 when i € 7, and j € 7. Recall that |D,|V |D.| < N'7¢¢. Then we have

N°€ 1 N¢
|(11)ij ko1 ko | Nrrae, L= LieT jeTe ¥ §o,  Nae teagh 12k, Lwi=0" (1 = LieT, jeTo)
1 1

S wrre  Lvu=0LieTjeT. + jmage  Lvu=0 (1 = LieT jeT.),

where in the last step, we used the fact t > N—¢/8,
Case 4: k; + ko = 1. In this case, using (S.9.5) we may compute that

(k1,0) ok F’

(1)ijkike = Ew [va3;] - Eu g 1" (0,0) ——— od (hy.(7(0,0))

Xij = 0} “P(xi; = 0) - 1y,,=0-

We note that there will be corresponding terms in (I2);;, and these terms will cancel out with the ones
described above.
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Combining the estimates in the above cases, we can obtain that there exists some constant §; = d; (€,)
such that

) o"F
Z (h)ij =Y., > Eulya}] Eg Ek)o)(o 0)—& (h'y,(ij)(oao))

k2
1,7 k1,k2>0, ad
ki1+ko=1

x P(xij = 0) - Ly, ;=0 + O(N~%). (5.9.8)

Next, we consider the estimation for (I);;. When ¢;; = 1, we can apply Gaussian integration by
parts to obtain that

1/2 €

t N
|(12)ij - Lyy;=1] — Ev anij{g(ij)(eijaczj)F (P iy (€45, Cij) }H Lyy=1 S 377 Lwu=1,

where the last step follows from (96)-(98). The estimation for (I2);; - 14,,=0 is similar to those of (11);;,
we omit repetitive details. In summary, with the independence between z; and w;;, we have by possibly
adjusting ¢y,

D (B)ij =Y (Ia)ij - Ly,=0 + Z I2)ij - 1y, =1

2 .7
Ky 6k2F/ _s,
=2 2. Evptwh]Ee [9&5 033500) % (16 (0,685 | Ty + OV ). (899)
4,J k1,k2>0, tj
k1+ko=1

Note by (87) and the choices of ¢, and €, we have

t
Ey [yai;]P(xi; = 0) — Eg [ytw};] = O <N2+2b>

This together with the ¢ dependent bounds for g(( 1) 0 and 92 F' / (8df']?) implies that it suffices to bound

the following quantity:

8k2 Fl
k:
od?

(1,0) 8k2 F!

G:= (IE@ {ggfj)’o)(O,xijbij) (h%(i]')(ovxijbij)):| —Ey {g(m (0,0)—~ o (h%(ij)(o,o))]) “Lyi;=0

To provide a more precise distinction between (S.9.8) and (S.9.9), we let

.. ak2 F’
g k

Fro ks (27 () = 9(33) (0,8)

ij

(2,35 (0, B)).

Therefore,

G = (M [Fkl,;@ (Zt(Xijbm)] By [Fkl,;@ (zt(O))D o

We may apply Taylor expansion to obtain that

<]qu {Fkl,m (Zt(Xz‘jbz‘j))} —Ey |:Fk1,k2 (Zt(O))D “Ly,=0

212/ 82>‘*7t 2 ({9)\7715 ?
=Ey | X5;07;F, ko (2:(D)) - W(b) “1y,=0 + Eg X”b Fi ok, (26(0)) - 9B, (b) “1y,=0,
ij ij

(S.9.10)
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with b € [0, B;;]. Here the first oder term disappeared due to symmetry. To bound the above terms
we need to first verify that z:(b) still lies inside D (w.h.p). This can be done by noting that for the
replacement matrix X;;)(b) which replace the B;; by b in X still satisfies the n*- regularity. Therefore
by Weyl’s inequality,

A=t (Xigbij) — A=t (B)] < (A= t(Xijbij) — Am(S(X))] + [Anm (S(X)) — A (S(X (i) (b))
+ A (S(X 7y (8) = A_u(B)| < N2/3 4 N7 4 N72/8 < N~ (S.9.11)

Applying the perturbation argument as in (80) to relate g(m (O b) back to g U) (d,J, b), and then using
(S.9.11) to verify that /) (b) € D, we can see that the bound g(ij) ) (0,b) < ¢t~ (171 gtill holds. Similarly,

,kaz)J)(O, b) < t=*2 for ky > 1. For the case when ky = 0, we may use (S.9.6) and the

fact that NnoImm? ({7 (b)) < 1 to conclude that h (i77(0,b) < 1. Combining the above bounds with a
Cauchy integral argument, we have

we can also obtain h

1 1

F§€17k2 (Zt(b)) =< W’ thkQ (Zt(b)) < @

Further using Lemma 5.4, we have for arbitrary (small)e > 0 and (large)D > 0,

Ay Ne M, \? Ne B
L / . ) 7 . , . D
]ID(Q T {’Fkl,lw (zt(b)) 6322] (b)’ < Nnot7} { k1,k2 (Zt(b)) (6BU (b)) ’ < NQT](Z)tS }) >1-N"".
Since
92\ N 2
2 U 7’t . ,t .
XZjb ( k1,ko (zt(b)> : aBlQJ (b) + Fkl kz( (b)) <6Bm (b)) ) ]"L[Jij:()

ON_ .
= (Froko (26 (Xij0ij)) = Frepka (26(0)) ) - Loy, —0 — (Xajbij Fry g, (26(0)) - =(0) ) - 1y,,—o0,
(Fra ke (2o cighi) = Pt (2(0) ) g0 = (xigbis Py e (1(0)) G5(0)) - T

the deterministic upper bound for the left hand side of the above equation follows from (89) in Lemma
5.4 and the fact that Im 2z, > N~!. Then we may follow the steps as in (S.9.2) to obtain that

92\_ O\ 2 Ne¢
f [X”bQ ( ks (2(0)) aBEjt(bH s (50 <8B¢;t (b)> )} Loy=0 3 N2pot?

Therefore, with the fact that Eg [yay;]P(xi; = 0) ~ tEg[ywi;] = t/N, we have by possibly adjusting 41,

‘Z Il 12 zy

§ X ]qu [Frwks (24 06i5819)) | = B [F s (20(0)) ‘1%:0 L ON") = O(N),
k1,k22>0,
k1+ko=1

This together with the arguments as in (115)-(116) completes the proof of (S.9.1). The proof for the case
a = 8/3 closely parallels, and is in fact simpler, primarily due to the absence of randomness in Aghifi-
Thus we omit the details. This concludes the proof. O
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