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Abstract

This is a supplementary material for [2], “Phase transition for the smallest eigenvalue of covariance
matrices”.

Keywords: sample covariance matrix, smallest eigenvalue, Tracy-Widom law, heavy-tailed random matrix

In this supplementary material, we shall give the proofs of the following results stated in [2]: Theorem
2.8, Lemma 2.9, Proposition 2.10, Lemma 3.2, Proposition 3.10, Lemma 5.1, and Corollary . We also
provide a remark on Theorem 2.11 in [2].

1 Proof of Lemma 2.9

Consider
z = (λmp

− + E) + iη, |E| ≤ N−ε1 , N−2/3−ε2 ≤ η ≤ ε3. (S.1.1)

Recall that
Vt =

√
tW +X,

where t = NE|Aij |2.

By the eigenvalue rigidity (the left edge analog of [6, Theorem 2.13]),

|λM (S(Vt))− λ−,t| ≺ N−2/3.

As an analog of Lemma 2.6,
|λM (S(Vt))− λmp

− | ≺ N−2εb .

Thus,
|λmp
− − λ−,t| ≺ N−2/3 +N−2εb . N−2ε1 .

We write
z = {λ−,t + (λmp

− − λ−,t) + E}+ iη =: (λ−,t + E′) + iη,

where E′ := E + (λmp
− − λ−,t). Then, with high probability, there exists κ ∈ R such that

z = (λ−,t + κ) + iη, |κ| ≤ 2N−ε1 , N−2/3−ε2 ≤ η ≤ ε3. (S.1.2)

Then, the desired result directly follows from the lemma below. Define bt ≡ bt(z) := 1 + cN tmt(z). Then
we have ζt(z) := zb2t − tbt(1− cN ).
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Lemma S.1.1. Let z as in (S.1.2). There exist constants c, C > 0 such that the following holds:
(i) For |κ|+ η ≤ ct2(logN)−2C ,

λM (XXT)− Re ζt(z) ≥ ct2, Im ζt(z) ≥ ctN−2/3−ε2 .

(ii) For |κ|+ η ≥ ct2(logN)−2C ,
Im ζt(z) ≥ ct2(logN)−C .

Proof. This lemma is essentially a byprduct of Theorem 2.7 through some elementary calculations.
Comparing ζt(λ−,t) and ζt(z), it boils down to the size of mt(λ−,t)−mt(z). We shall rely on the square
root behavior of ρt.

Case (1) |κ| ≤ 2η. Notice that

|mt(λ−,t)−mt(z)| ≤
∫ λ+,t

λ−,t

3η

|λ− λ−,t||λ− z|
ρt(λ)dλ.

By the square-root behavior of ρt near the left edge,∫ λ−,t+6η

λ−,t

η

|λ− λ−,t||λ− z|
ρt(λ)dλ .

∫ λ−,t+6η

λ−,t

η

η
√
λ− λ−,t

dλ .
√
η.

If λ ≥ λ−,t + 6η, we have λ− λ−,t − 3η ≥ (λ− λ−,t)/2. Thus,∫ λ+,t

λ−,t+6η

η

|λ− λ−,t||λ− z|
ρt(λ)dλ .

∫ λ+,t

λ−,t+6η

η

(λ− λ−,t)3/2
dλ .

√
η.

Case (2) κ > 2η. We need to estimate∫ λ+,t

λ−,t

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ.

Due to the square-root decay,∫ λ−,t+η

λ−,t

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ .

∫ λ−,t+η

λ−,t

κ

κ
√
λ− λ−,t

dλ .
√
η.

We also observe∫ λ−,t+κ−η

λ−,t+η

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ .

∫ κ−η

η

κ√
x(κ− x)

dx .
√
κ log(κ/η).

If λ ∈ [λ−,t + κ− η, λ−,t + 2κ], we have λ− λ−,t ∼ κ, which implies∫ λ−,t+2κ

λ−,t+κ−η

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ .

∫ κ

0

√
κ√

x2 + η2
dx .

√
κ log(κ/η).

For λ ∈ [λ−,t + 2κ, λ+,t], ∫ λ+,t

λ−,t+2κ

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ .

√
κ

Case (3) κ < −2η. By splitting [λ−,t, λ+,t] into [λ−,t, λ−,t + |κ|] and [λ−,t + |κ|, λ+,t], we find that∫ λ+,t

λ−,t

κ

|λ− λ−,t||λ− z|
ρt(λ)dλ .

√
|κ|.
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Note |bt(λ−,t)| = O(1) = |bt(z)| due to the fact that |mt(u)| . (t|u|)−1/2. Thus, for |κ|+η ≤ (logN)−Ct2,

|ζt(z)− ζt(λ−,t)| � t2.

By Lemma 2.6 and Lemma 3.2,

(1− t)λmp
− −Re ζt(z) =

(
(1− t)λmp

− − λM (S(X))
)

+ (λM (S(X))− ζt(λ−,t)) + Re [ζt(λ−,t))− ζt(z)] ∼ t2.

Next, we consider the imaginary part of ζt(z). Setting

Φ(κ, η) =

{√
κ+ η, κ ≥ 0,
η√
|κ|+η

, κ < 0,

we have Im ζt(z) ∼ η + tΦ(κ, η), which gives the desired estimates on the imaginary part of ζt(z).

2 Proof of Proposition 2.10

We estimate the size of Gij(X, ζ) only. We can bound Gij(X
>, ζ) in a similar way. Define H := X/

√
1− t

and denote ω := ζ/(1− t). It is enough to find a constant c = c(εa, εα, εb) such that

|Gij(H,ω)− δijmmp(ω)| ≺ N−c1i,j∈Tr + t−2(1− 1i,j∈Tr ).

This can be proved by a minor modication of [11, Section 6]. In light of Lemma 2.6, the following two
lemmas are trivial. We may use the rigidiy estimate, Lemma 2.6, to get Lemma S.2.2 below.

Lemma S.2.1 (Crude bound using the imaginary part). Consider ω = E + iη ∈ C+. If η > C,

|Gij(H,ω)| ≤ C−1.

Lemma S.2.2 (Crude bound on the domain Dζ). Let Dζ = Dζ(c0, C0) be as in Eq. (31). Let ζ ∈ Dζ .
Denote ω = ζ/(1− t). Then with high probability,

|Gij(H,ω)| . (logN)C0t−2.

Let us write H = (hij). By Schur complement,

Gii(H,ω) = − 1

ω + ω
N

∑N
k=1Gkk((H(i))>, ω) + Zi

(S.2.1)

where we denote by H(i) the matrix obtained from H by removing i-th row and

Zi := ω
∑

1≤k,l≤N

hikhilGkl((H
(i))>, ω)− ω

N

N∑
k=1

Gkk((H(i))>, ω).

We define Λd(ω), Λo(ω) and Λ(ω) by

Λd(ω) = max
i∈Tr
|Gii(H,ω)−mmp(ω)|, Λo(ω) = max

i 6=j
i,j∈Tr

|Gij(H,ω)|, Λ(ω) = |mH(ω)−mmp(ω)|.
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For ω = E + iη, we define

Φ ≡ Φ(ω) :=

√
Immmp(ω) + Λ(ω)

Nη
+ t−2N−εα/2 + t−2N−εb .

Define the events Ω(ω,K), B(ω) and Γ(ω,K) for K > 0 by

Ω(ω,K) :=
{

max
(

Λo(ω),max
i∈Tr
|Gii(H,ω)−mH(ω)|,max

i∈Tr
|Zi(ω)|

)
≥ KΦ

}
,

B(ω) := {Λo(ω) + Λd(ω) > (logN)−1}, Γ(ω,K) := Ωc(ω,K) ∪B(ω).

We also introduce the logarithmic factor ϕ ≡ ϕN := (logN)log logN .
Lemma S.2.3. Suppose Ψ is good. Recall ω ≡ ω(ζ) = ζ/(1− t). There exist a constant C > 0 such that
the event ⋂

ζ∈Dζ

Γ(ω, ϕC)

holds with high probability.

Proof. By a standard lattice argument, it is enough to show that Γ(ω, ϕC) holds with with high
probability for any ω = ω(ζ) with ζ ∈ Dζ . Fix ω = ω(ζ) with ζ ∈ Dζ . We define

Ωo(ω,K) :=
{

Λo(ω) ≥ KΦ(ω)
}
,

Ωd(ω,K) :=
{

max
i∈Tr
|Gii(H,ω)−mH(ω)| ≥ KΦ(ω)

}
,

ΩZ(ω,K) :=
{

max
i∈Tr
|Zi| ≥ KΦ(ω)

}
.

Since Ω = Ωo ∪Ωd ∪ΩZ , it is sufficient to show Ωco ∪B, Ωcd ∪B and ΩcZ ∪B hold with high probability
respectively.

(1) Consider the event Ωco ∪B. Fix i 6= j with i, j ∈ Tr. On the event Bc, we have |Gii(H, ζ)| ∼ 1. Then,
by the resolvent identity,

Gjj(H
(i), ω) = Gjj(H,ω)− Gji(H,ω)Gij(H,ω)

Gii(H,ω)
, (S.2.2)

it follows that Gjj(H
(i), ω) ∼ 1 on Bc. Thus, we can get

Λo(ω) . max
i 6=j
i,j∈Tr

∣∣∣∣∣∣
∑

1≤k,l≤N

hikhjlGkl((H
(ij))>, ω)

∣∣∣∣∣∣ ,
where we denote by H(ij) the matrix obtained from H by removing i-th and j-th rows. Since i, j ∈ Tr,
applying the large deviation estimate [1, Corollary 25], the following estimate holds with high probability:

∣∣∣∣ ∑
1≤k,l≤N

hikhjlGkl((H
(ij))>, ω)

∣∣∣∣ ≤ ϕC
N−εb max

k,l
|Gkl((H(ij))>, ω)|+ 1

N

(∑
k,l

|Gkl((H(ij))>, ω)|2
)1/2

 .

Note that ∑
k,l

|Gkl((H(ij))>, ω)|2 =

∑
k ImGkk((H(ij))>, ω)

η
, (S.2.3)

and ∑
k

Gkk((H(ij))>, ω)−
∑
`

G``(H
(ij), ω) =

O(N)

ω
. (S.2.4)
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Using (S.2.2), (S.2.3) and (S.2.4), together with Lemma S.2.2, we conclude that on the event Bc, with
high probability, for some constant C > 0 large enough,

Λo(ω) ≤ ϕC
(
t−2N−εb +

√
Immmp + Λ + Λ2

o + t−4N−εα

Nη
+

1

N

)
,

with high probability for some constant C > 0 large enough. The event Ωco ∩ Bc holds with high
probability.

(2) We claim that ΩcZ ∪B holds with high probability. In fact, the claim directly follows from the large
deviation estimate [1, Corollary 25] repeating the same argument we used above; on the event Bc, for
i ∈ Tr, we have |Zi| ≤ ϕCΦ with high probability for some constant C > 0.

(3) We shall prove Ωcd ∪B holds with high probability. For i ∈ Tr,

Gii(H,ω)−mH(ω) ≤ max
j∈Tr
|Gii(H,ω)−Gjj(H,ω)|+ ϕCt−2N−εα ,

where we use Lemma S.2.2 to bound Gjj with j /∈ Tr. For i, j ∈ Tr with i 6= j, on the event Bc, with
high probability, we can find that

|Gii(H,ω)−Gjj(H,ω)| ≤
∣∣∣∣ 1

ω + ω
N

∑N
k=1Gkk((H(i))>, ω) + Zi

− 1

ω + ω
N

∑N
k=1Gkk((H(j))>, ω) + Zj

∣∣∣∣
. max

i∈Tr
|Zi|+ Λ2

o + t−4N−εα

where we use ∑
k

Gkk((H(i))>, ω)−
∑
`

G``(H
(i), ω) =

M −N + 1

ω
(S.2.5)

and the estimates we have shown above. The desired result follows.

Corollary S.2.4. Suppose Ψ is good. Let C ′ > 0 be a constant. There exist a constant C > 0 such that
the event Ωc(E + iη, ϕC) holds with high probability.

Proof. Recall the argument we used in the proof of the previous lemma. Using the large deviation estimate
[1, Corollary 25] with Lemma S.2.1, it is straightforward that Ωco and ΩcZ hold with high probability. For
Ωcd, the desired result follows from the consequence of Cauchy’s interlacing theorem, that is,

1

N

N∑
k=1

Gkk((H(i))>, ω)− 1

N

N∑
k=1

Gkk((H(j))>, ω) .
1

Nη
.

Let us introduce the deviance function D(u(ω), ω) by setting

D(u(ω), ω) :=

(
1

u(ω)
+ cNωu(ω)

)
−
(

1

mmp(ω)
+ cNωmmp(ω)

)
.

Lemma S.2.5. On the event Γ(ω, ϕC),

|D(mH(ω), ω)| ≤ O(ϕ2CΦ2) +∞1B(ω).

Proof. Recall that (mmp)
−1(ω) = −ω + (1 − cN ) − ωcNmmp. Using (S.2.1), (S.2.2) and (S.2.5), on the

event Ωc ∩Bc, we have

G−1
ii (H,ω) = (mmp)

−1(ω) + ωcN (mmp(ω)−mH(ω))− Zi +O(ϕ2CΦ2 + t−4N−εα +N−1),
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so it follows that

m−1
H (ω)−G−1

ii (H,ω) = D(mH(ω), ω) + Zi +O(ϕ2CΦ2 + t−4N−εα +N−1).

Averaging over i ∈ Tr yields

1

|Tr|
∑
i∈Tr

(m−1
H (ω)−G−1

ii (H,ω)) = D(mH(ω), ω) +
1

|Tr|
∑
i∈Tr

Zi +O(ϕ2CΦ2 + t−4N−εα +N−1).

Since
∑

iGii(H,ω)−mH(ω) = 0 and

m−1
H (ω)−G−1

ii (H,ω) =
Gii(H,ω)−mH(ω)

m2
H(ω)

−
(
Gii(H,ω)−mH(ω)

)2
m3
H(ω)

+O
((Gii(H,ω)−mH(ω)

)3
m4
H(ω)

)
,

we obtain that |D(mH(ω), ω)| ≤ O(ϕ2CΦ2) on the event Ωc ∩Bc.

Lemma S.2.6. Recall ω ≡ ω(ζ) = ζ/(1− t) and write ω = E + iη. Let C,C ′ > 0 be constants. Consider
an event A such that

A ⊂
⋂
ζ∈Dζ

Γ(ω, ϕC) ∩
⋂

ζ∈Dζ ,η=C′

Bc(ω).

Suppose that in A, for ω = ω(ζ) with ζ ∈ Dζ ,

|D(mH(ω), ω)| ≤ d(ω) +∞1B(ω),

where d : C 7→ R+ is a continuous function such that d(E+ iη) is decreasing in η and |d(z)| ≤ (logN)−8.
Then, for all ω ≡ ω(ζ) with ζ ∈ Dζ , we have

|mH(ω)−mmp(ω)| . logN
d(ζ)√

|E − λmp
− |+ η + d(ζ)

in A, (S.2.6)

and
A ⊂

⋂
ζ∈Dζ

Bc(ζ). (S.2.7)

Proof. We follow the proof of [11, Lemma 6.12]. Denote ω = ω(ζ) = E + iη with ζ ∈ Dζ . For each E, we
define

IE := {η : Λo(E + iη′) + Λd(E + iη′) ≤ (logN)−1 for all η′ ≥ η such that (1− t) · (E + iη′) ∈ Dζ}.

Let m1 and m2 be two solutions of equation D(m(ω), ω) = d(ω). On Bc(ω), by assumption, we have

|D(mH(ω), ω)| ≤ d(ω).

Then, the estimate (S.2.6) immediately follows from the argument around [11, Eq. (6.45)–Eq. (6.46)].
Next, we will prove the second statement (S.2.7). Due to the case η = C ′, we know IE 6= ∅ on A. Let

us argue by contradiction. Define

DE = {η : ω = E + iη, (1− t) · ω ∈ Dζ}.

Assume IE 6= DE . Let η0 = inf IE . For ω0 = E+iη0, we have Λo(ω0)+Λd(ω0) = (logN)−1. It also follows

Λ(ω0) ≤
∣∣∣ 1

N

∑
i∈Tr

(
Gii(H,ω0)−mmp(ω0)

)∣∣∣+
∣∣∣ 1

N

∑
i/∈Tr

(
Gii(H,ω0)−mmp(ω0)

)∣∣∣
≤ (logN)−1 + ϕCt−2N−εα . (logN)−1.
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By the first statement we already proved, on the event A, we obtain

Λ(ω0) . (logN)−3.

Since Λo(ω0)+Λd(ω0) = (logN)−1, we have A ⊂ Bc(ω0) and thus, by the assumption for A, we conclude
that Λo(ω0) + Λd(ω0)� (logN)−1 on the event A, which makes a contradiction.

Proposition S.2.7. Recall ω ≡ ω(ζ) = ζ/(1 − t) and write ω = E + iη. There exist a constant C > 0
such that the following event holds with high probability:⋂

ζ∈Dζ

{Λo(ω) + Λd(ω) ≤ ϕC(t−2(Nη)−1/2 + t−3N−εα/2 + t−3N−εb)}.

Proof. Consider the event

A0 =
⋂
ζ∈Dζ

Γ(ω, ϕC).

Also we set (for some constant C ′ > 1 and ω = E + iη)

A = A0 ∩
⋂

ζ∈Dζ ,η=C′

Bc(ω).

By Lemma S.2.3 and Corollary S.2.4, the event A holds with high probability. Using Lemma S.2.2, we
observe that for ω = ω(ζ) with ζ ∈ Dζ ,

Φ(ω) . ϕt−1(Nη)−1/2 + t−2N−εα/2 + t−2N−εb .

Let us set
d(ω) = ϕC

(
t−1(Nη)−1/2 + t−2N−εα/2 + t−2N−εb

)
.

On the event A, for ω = ω(ζ) with ζ ∈ Dζ , by Lemma S.2.5 and Lemma S.2.6,

Λ(ω) .
d(ω)√

|E − λmp
− |+ η

.

Also, by Lemma S.2.6,

A ⊂
⋂
ζ∈Dζ

Bc(ω),

which means the event A is contained in Ωc(ω, ϕC) for any ω = ω(ζ) with ζ ∈ Dζ . The bound for Λd is
given by maxk∈Tr |Gkk(H,ω)−mH |+ Λ.

3 Proof of Theorem 2.8

Recall bt = 1 + cN tmt and ζt = ζt(z) = zb2t − tbt(1− cN ). We also set

mt = cNmt −
1− cN
z

, m(t)
mp(ζ) = cNm(t)

mp(ζ)− 1− cN
ζ

.

Let us state a left edge analog of [6, Theorem 2.7].

Theorem S.3.1. Suppose that the assumptions in Theorem 2.8 hold. Then,

|Gij(Vt, z)− btGij(X, ζt(z))| ≺ t−3

(√
Immt

Nη
+

1

Nη

)
+
t−7/2

N1/2
,
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and

|Gij(V >t , z)− (1 + tmt)Gij(X
>, ζt(z))| ≺ t−3

(√
Immt

Nη
+

1

Nη

)
+
t−7/2

N1/2
,

uniformly in z ∈ D(ε1, ε2, ε3). In addition,

|(G(Vt, z)Vt)ij − (G(X, ζt(z))X)ij | ≺ t−3

(√
Immt

Nη
+

1

Nη

)
+
t−7/2

N1/2
,

and

|(V >t G(Vt, z))ij − (X>G(X, ζt(z)))ij | ≺ t−3

(√
Immt

Nη
+

1

Nη

)
+
t−7/2

N1/2
,

uniformly in z ∈ D(ε1, ε2, ε3).

Proof. Roughly speaking, the conclusion is a left edge analog of [6, Theorem 2.7]. The proof is nearly
the same, and thus we only highlight some differences. We first record the notations from [6, Section B
of Supplement]. Due to the rotationally invariant property of Gaussian matrix, we have

Vt = X +
√
tW

d
= O1ṼtO

>
2 , Ṽt := X̃ +

√
tW, (S.3.1)

where X̃ is a diagonal matrix with diagonal entries being λi(S(X))1/2, i ∈ [M ]. Recall the notations in
Lemma 5.2, and we briefly write R(z) = R(Ṽt, z) in this proof. By (S.3.1), to prove an entrywise local
law for R(Vt, z), it suffices to prove an anisotropic local law for the resolvent R(z). We further define
the asymptotic limit of R(z) as

Πx(z) :=

 −(1+cN tmt)

z(1+cN tmt)(1+tmt)−X̃X̃>
−z−1/2

z(1+cN tmt)(1+tmt)−X̃X̃>
X̃

X̃> −z−1/2

z(1+cN tmt)(1+tmt)−X̃X̃>
−(1+tmt)

z(1+cN tmt)(1+tmt)−X̃>X̃

 .
We define the index sets

I1 := {1, · · · ,M}, I2 := {M + 1, · · · ,M +N}, I := I1 ∪ I2.

In the sequel, we use the Latin letter i, j ∈ I1, Greek letters µ, ν ∈ I2, a, b ∈ I. For an I × I matrix A
and i, j ∈ I1, we define the 2× 2 minor as

A[ij] :=

(
Aij Aij̄
Aīj Aīj̄

)
,

where ī := i+M ∈ I2. Moreover, for a ∈ I \ {i, ī}, we denote

A[i]a =

(
Aia
Aīa

)
, Aa[i] = (Aai, Aaī.)

Let the error parameter Ψ(z) be defined as follows,

Ψ(z) :=

√
Immt

Nη
+

1

Nη
.

Instead of proving [6, Eq. (B.68) in Supplement], which aims at bounding u>(Πx(z))−1[R(z) −
Πx(z)](Πx(z))−1v for any deterministic unit vector u, v ∈ RM+N , we shall prove

|u>[R(z)−Πx(z)]v| ≺ t−3Ψ(z) +
t−7/2

N1/2
. (S.3.2)

8



We remark here that in [6], it is assumed that all λi(S(X))’s are O(1). Under this assumption, adding
(Πx(z))−1 is harmless. However, in our case, λi(S(X)) could diverge with N . Then, adding the (Πx(z))−1

factor which will blow up along with big λi(S(X)), will complicate the proof of the anisotropic law.
On the other hand, (S.3.2) is what we need anyway. Hence, we get rid of the (Πx(z))−1 and adapt the
proof in [6] to our estimate (S.3.2). Without the (Πx(z))−1 factor, the R(z) and Πx(z) entries are well
controlled, and the remaining proof is nearly the same as [6].

We shall first prove an entrywise version of (S.3.2): for any a, b ∈ I,

|[R(z)−Πx(z)]ab| ≺ t−3Ψ(z) +
t−7/2

N1/2
. (S.3.3)

The derivation of (S.3.3) follows the same procedure as the proof of [6, Eq. (B.69) in Supplement]. This
proof primarily relies on Schur complement, the large deviation of quadratic forms of Gaussian vector,
and the fact that mini |λi(S(X))− ζt(z)| & t2.

Then, for general u, v, analogous to [6, Eq. (B. 72) in Supplement], we have

|u>[R(z)−Πx(z)]v| ≺ t−3Ψ(z) +
t−7/2

N1/2
+
∣∣∣∑
i 6=j

u>[i]R[ij]u[j]

∣∣∣
+
∣∣∣ ∑
µ6=ν≥2M+1

u>µRµνuν
∣∣∣+ 2

∣∣∣ ∑
i∈I1,µ≥2M+1

u>[i]R[i]µuµ

∣∣∣.
Therefore, it suffices to prove the following high moment bounds, for any a ∈ N,

E
∣∣∣∑
i 6=j

u>[i]R[ij]u[j]

∣∣∣2a ≺ (t−3Ψ(z) +
t−7/2

N1/2

)2a

,

E
∣∣∣ ∑
µ6=ν≥2M+1

u>µRµνuν
∣∣∣2a ≺ (t−3Ψ(z) +

t−7/2

N1/2

)2a

,

E
∣∣∣ ∑
i∈I1,µ≥2M+1

u>[i]R[i]µuµ

∣∣∣2a ≺ (t−3Ψ(z) +
t−7/2

N1/2

)2a

.

The above estimates are proven using a polynomialization method outlined in [5, Section 5], with input
from the entrywise estimates (S.3.3) and resolvent expansion (cf. [6, Lemma B.2 in Supplement]). We
omit the details.

Remark 1. Actually, the estimates in Theorem S.3.1 hold uniformly in z such that

λ−,t−ϑ−1t2 ≤ Re z ≤ λ−,t+ϑ−1, Im z ·
(
t+
(
|Re z−λ−,t|+Im z

)1/2) ≥ N−1+ϑ, Im z ≤ ϑ−1, (S.3.4)

for any ϑ > 0. We can observe that every z ∈ D(ε1, ε2, ε3) satisfies (S.3.4) if εa, ε1, ε2 and ϑ are
sufficiently small. Also note that bt = O(1) and 1 + tmt = O(1) in the domain D(ε1, ε2, ε3).

By Theorem S.3.1 and Lemma 2.9, it is enough to analyze G(X, ζ) and G(X>, ζ) with ζ ∈ Dζ in
order to get the desired result. This was be done in Proposition 2.10. Together with Proposition S.3.2
and Corollary S.3.3 below, we complete the proof of Theorem 2.8.

Proposition S.3.2. Suppose that the assumptions in Proposition 2.10 hold. The following estimates
hold with respect to the probability measure PΨ.
(i) If i ∈ Tr, we have

|[G(X, ζ)X]ij | ≺ N−εb/2.
(ii) If j ∈ Tc, we have

|[G(X, ζ)X]ij | ≺ N−εb/2.
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(iii) Otherwise, we have the crude bound

|[G(X, ζ)X]ij | ≤ ‖G(X, ζ)X‖ . t−2.

Proof. Using Proposition 2.10, it follows from Proposition S.3.4 below.

With the above bounds, we can further improve the bound of the off-diagonal Green function entries
when i or j is typical index.

Corollary S.3.3. Suppose that the assumptions in Proposition 2.10 hold. The following estimates hold
with respect to the probability measure PΨ.
(i) If i 6= j and i ∈ Tr (or j ∈ Tr), there exists a constant δ = δ(εa, εα, εb) > 0 such that

|Gij(X, ζ)| ≺ N−δ.

(ii) If i 6= j and i ∈ Tc (or j ∈ Tc), there exists a constant δ = δ(εa, εα, εb) > 0 such that

|Gij(X>, ζ)| ≺ N−δ.

Proof of Corollary S.3.3. We shall give the proof only for the case i 6= j and i ∈ Tr. The other cases can
be proved in the same way. Assume i 6= j and i ∈ Tr, observe that

|Gij(X, ζ)| = |Gii(X, ζ)| ·

∣∣∣∣∣∣
∑
k,l

xikGkl((X
(i))>, ζ)xjl

∣∣∣∣∣∣ ,
where we denote by X(i) the matrix obtained from X by removing i-th row. Note that∑

l

Gkl((X
(i))>, ζ)xjl = [G((X(i))>, ζ)(X(i))>]kj .

Since i ∈ Tr, we apply the large deviation estimates in [1, Corollary 25] to bound∣∣∣∣∣∑
k

xik[G((X(i))>, ζ)(X(i))>]kj

∣∣∣∣∣ ,
where we also use Proposition S.3.4 below to get a high probability bound for ‖G((X(i))>, ζ)(X(i))>‖.

Proposition S.3.4. Let ζ = E + iη ∈ C+.
(i) If i ∈ Tr, we have

|[G(X, ζ)X]ij | ≺

(
N−εb max

k
|Gkj((X(i))>, ζ)|+

(
ImGjj((X

(i))>, ζ)

Nη

)1/2
)

×

(
1 + |ζ| · |Gii(X, ζ)| ·

(
N−εb max

k,l
|Gkl((X(i))>, ζ)|+

(∑
k ImGkk((X(i))>, ζ)

N2η

)1/2
))

,

where we denote by X(i) the matrix obtained from X by removing i-th row.
(ii) If j ∈ Tc, we have

|[G(X, ζ)X]ij | ≺

(
N−εb max

k
|Gik(X [j], ζ)|+

(
ImGii(X

[j], ζ)

Nη

)1/2
)
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×

(
1 + |ζ| · |Gjj(X>, ζ)| ·

(
N−εb max

k,l
|Gkl(X [j], ζ)|+

(∑
k ImGkk(X [j], ζ)

N2η

)1/2
))

,

where we denote by X [j] the matrix obtained from X by removing j-th column.
(iii) Let X = UDV be a singular value decomposition of X where

diag(D) = (d1, d2, · · · , dp) ≡
(√

λ1(S(X)),
√
λ2(S(X)), · · · ,

√
λM (S(X))

)
.

(Here we also assume M < N without loss of generality.) Then,

‖G(X, ζ)X‖ ≤ max
1≤i≤p

∣∣∣∣ di
d2
i − ζ

∣∣∣∣ .
Proof. (i) Assume i ∈ Tr. Note that G(X, ζ)X = XG(X>, ζ). Let x(i) be the i-th row of X. See that

X>X − ζ = (X(i))>X(i) − ζ + x>(i)x(i).

By the Sherman-Morrison formula,

G(X>, ζ) = G((X(i))>, ζ)−
G((X(i))>, ζ)x>(i)x(i)G((X(i))>, ζ)

1 + x(i)G((X(i))>, ζ)x>(i)
.

Since
(
Gii(X, ζ)

)−1
= −ζ

(
1 + x(i)G((X(i))>, ζ)x>(i)

)
,

G(X>, ζ) = G((X(i))>, ζ) + (ζGii(X, ζ)) ·G((X(i))>, ζ)x>(i)x(i)G((X(i))>, ζ).

We write [XG(X>, ζ)]ij = x(i)G(X>, ζ)ej . Then,

x(i)G(X>, ζ)ej = x(i)G((X(i))>, ζ)ej + (ζGii(X, ζ)) · (x(i)G((X(i))>, ζ)x>(i)) · (x(i)G((X(i))>, ζ)ej).

Since i ∈ Tr, by the large deviation estimate [1, Corollary 25], the desired result follows.

(ii) Assume j ∈ Tc. Let x[j] be j-th column of X. See that

[G(X, ζ)X]ij = e>i G(X, ζ)x[j].

By the Sherman-Morrison formula,

G(X, ζ) = G(X [j], ζ) + (ζGjj(X
>, ζ)) ·G(X [j], ζ)x[j]x

>
[j]G(X [j], ζ),

where we denote by X [j] the matrix obtained from X by removing j-th column. Then,

e>i G(X, ζ)x[j] = e>i G(X [j], ζ)x[j] + (ζGjj(X
>, ζ)) · (e>i G(X [j], ζ)x[j]) · x>[j]G(X [j], ζ)x[j]).

Using j ∈ Tc, we get the desired result using the large deviation estimate [1, Corollary 25].

(iii) This is elementary, and thus we omit the details.

4 Remark on Theorem 2.11

Theorem 2.11 is a version of [7, Theorem V.3] with respect to the left edge. The required modification
would be straightforward. Let us summarize the main idea of [7] as follows. Let Bi (i = 1, · · · ,M) be
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independent standard Brownian motions. We fix two time scales:

t0 = N−
1
3 +φ0 , t1 = N−

1
3 +φ1 , (S.4.1)

where φ0 ∈ ( 1
3 −

εb
2 ,

1
3 ) and 0 < φ1 <

φ0

100 .
For time t ≥ 0, we define the process {λi(t) : 1 ≤ i ≤ M} as the unique strong solution to the

following system of SDEs:

dλi = 2λ
1/2
i

dBi√
N

+

 1

N

∑
j 6=i

λi + λj
λi − λj

dt, 1 ≤ i ≤M,

with initial data λi(0) = λi(γwS(Vt0)) where γw is chosen to match the edge eigenvalue gaps of S(Vt0)
with those of Wigner matrices. Recall the convention: λ1 ≥ λ2 ≥ · · · ≥ λM .

Note that the process {λi(t)} has the same joint distribution as the eigenvalues of the matrix

γwS(Vt0+ t
γw

) = (γ1/2
w X + (γwt0 + t)1/2W )(γ1/2

w X + (γwt0 + t)1/2W )>.

Denote by ρλ,t the asymptotic spectral distribution of S(Vt0+ t
γw

) (in terms of the rectangular free con-

volution actually). Let Eλ(t) be the left edge of ρλ,t. Now we introduce a deforemd Wishart matrix
UU>. Define U := Σ1/2X where X is a M ×N real Gaussian matrix (mean zero and variance N−1) and
Σ = diag(σ1, · · · , σM ) is a diagonal population matrix. Let ρµ,0 be the asymptotic spectral distribution
of UU> (given by the multiplicative free convolution of the MP law and the ESD of Σ). We choose the
diagonal population covariance matrix Σ such that ρµ,0 matches ρλ,0 near the left edge Eλ(0) (square-
root behavior). We write µi(0) := µi(UU>). Next, define the process {µi(t) : 1 ≤ i ≤ M} through the
rectangular DBM with initial data {µi(0)}. We can show that the edge eigenvalues of {µi(t)} are gov-
erned by the Tracy-Widom law. We denote by ρµ,t the rectangular free convolution of ρµ,0 with the
Marchenko-Pastur (MP) law at time t. Let Eµ(t) be the left edge of ρµ,t. We remark that Eλ(0) = Eµ(0).
Then, in order to get Theorem 2.11, it is enough to show∣∣(λM (t1)− Eλ(t1)

)
−
(
µM (t1)− Eµ(t1)

)∣∣ ≺ N−2/3−δ,

for δ > 0 sufficiently small. The proof of the above estimate relies on the local equilibrium mechanism
of the rectangle DBM, which does not have any difference between the left edge or the right edge of the
spectrum, given η∗-regularities of the initial states. Hence, we omit the remaining argument, and refer
to [7] for details.

5 Proof of Lemma 3.2

We shall prove Lemma 3.2 in this section.

Proof of Lemma 3.2 (i). The proof is similar to that in [6], we provide proof here completeness. The
statement ζ−,t−λM (S(X)) ≤ 0 follows directly from Lemma 3.1. For the other estimate, by Lemma 3.1,
we know that Φt(ζ−,t) is the only local extrema of Φt(ζ) on the interval (0, λM (S(X))). Hence we have
Φ′t(ζ−,t) = 0, which gives the equation

(1− cN tmX(ζ−,t))
2 − 2cN tm

′
X(ζ−,t) · ζ−,t (1− cN tmX(ζ−,t))− cN (1− cN )t2m′X(ζ−,t) = 0.

Rearranging the terms, we can get

cN tm
′
X(ζ−,t) =

(1− cN tmX(ζ−,t))
2

2ζ−,t (1− cN tmX(ζ−,t)) + (1− cN )t
. (S.5.1)

By Lemma 2.1 (iv) and Eq. (22), we have on ΩΨ that

cN tmX(ζ−,t) = O(t1/2). (S.5.2)
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Plugging the above bound back to (S.5.1), we can get m′X(ζ−,t) ∼ t−1. This together with Lemma 2.2

gives
√
λM (S(X))− ζ−,t ∼ t.

Proof of Lemma 3.2 (ii). Since S(X) is η∗-regular in the sense of Definition 1, the estimates for |m(k)
X (ζ)|

on the event ΩΨ is an immediate consequence of Lemmas 2.2 and Lemma 3.2 (i).

We prove the estimate for |mX(z)−m
(t)
mp(z)| as follows. Recall that β = (α−2)/24. First, we establish

the convergence of Stieltjes transform of a truncated matrix model using the result in [9]. To this end,
let us define X̄ = (x̄ij) := (xij1xij<N−β ) and t̄ := 1−NE|x̄ij |2. It is easy to show that |t̄− t| = o(N−1),

and thus we have |m(t)
mp(z1)−m

(t̄)
mp(z1)| ≤ (Nη1)−1. Then it follows from [9, Theorem 2.7] that for any z1

such that |z1 − ζ−,t| ≤ τt2 and η1 ≡ Im z1 > N−1+δ with 1 > δ > 0 to be chosen later,

mX̄(z1)−m(t)
mp(z1) ≺ 1

Nβ
+

1

Nη1
, (S.5.3)

We remark here that the local law proved in [9, Theorem 2.7] is for deterministic z. But it is easy to show
that the local law holds uniformly in z in the mentioned domain in [9, Theorem 2.7], with high probability,
by a simple continuity argument. Hence, as long as z1 fall in this domain with high probability, even
though z1 might be random, we still have (S.5.3). Using the facts |λM (S(X))− (1− t)λmp

− | . N−εb and
λM (S(X))− ζ−,t ∼ t2 with high probability (cf. Lemmas 2.6 and 3.2 (i)), we have for τ small enough,

|z1 − (1− t)λmp
− | ≥ |ζ−,t − λM (S(X))| − |λM (S(X))− (1− t)λmp

− | − |z1 − ζ−,t| & t2,

which gives |(m(t)
mp)′(z1)| . t−4 with high probability. Also, we have |m′

X̄
(z1)| . t−4 with high probability,

by the choice of z1, Eq. (28), and Lemma 3.2 (i). Therefore, for any z2 satisfying Re z2 = Re z1 and
η2 = Im z2 < N−1+δ, we have

|mX̄(z2)−m(t)
mp(z2)|.|mX̄(z1)−m(t)

mp(z1)|+ t−4|z1 − z2|≺
1

Nβ
+

1

N1/2
+

1

t4N1/2
.

1

Nβ
, (S.5.4)

where in the first step we used the fact |zi−ζ−,t| ≤ τt2, i = 1, 2, and in the second step we chose δ = 1/2.
Next, we use the rank inequality to compare mX̄(z) with mX(z). Notice that

mX̄(z)−mX(z) ≤ 2

N
Rank(X̄ −X) · (‖(S(X̄)− z)−1‖+ ‖(S(X)− z)−1‖) ≺ Rank(X̄ −X)

Nt2
.

A similar argument as in the proof of Lemma 2.3 shows that,

Rank(X̄ −X) ≺ N1−(α−2−2αβ)/4.

Therefore, we can obtain mX̄(z) −mX(z) ≺ N−(α−2−2αβ)/4t−2. Together with the estimate in (S.5.4),
we have

mX(z)−m(t)
mp(z) ≺

1

N (α−2−2αβ)/4t2
+

1

Nβ
.

The claim now follows by the fact t� N (2−α)/16 in light of Eq. (3).

Proof of Lemma 3.2 (iii). Repeating the proof of [6, Lemma A.2], we can obtain

|ζ̄−,t − ζ−,t| . t3|m′X(ζ−,t)− (m(t)
mp)
′(ζ−,t)|.
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By the Cauchy integral formula, we have

|m′X(ζ−,t)− (m(t)
mp)
′(ζ−,t)| .

∮
ω

|mX(a)−m
(t)
mp(a)|

|a− ζ−,t|2
da, (S.5.5)

where ω ≡ {a : |a− ζ−,t| = τt2} for some small τ . Therefore, we have by Lemma 3.2 (ii),

|ζ̄−,t − ζ−,t| . t sup
a∈ω
|mX(a)−m(t)

mp(a)| ≺ tN−β ,

proving the claim.

6 Proof of Proposition 3.10

In this section, we shall give the proof of Proposition 3.10.

Proof of Proposition 3.10. By a minor process argument, we have with probability at least 1−N−D for
arbitrary large D, there exists constant Ck > 0, such that

|λM (S(X̃(k)))− ζ̂e| =
∣∣∣(1− t)λmp

− − ζ̄−,t + λM (S(X̃(k)))− (1− t)λmp
− + iN−100K + ζ̄−,t − ζ̂e

∣∣∣
≥
√
cN t

2 − |λM (S(X̃(k)))− (1− t)λmp
− | − |ζ̄−,t − ζ̂e| −N−100K ≥ Ckt2. (S.6.1)

Here in the last step, we used Eq. (45) and the fact that |λM (S(X̃(k)))− (1− t)λmp
− | ≺ N−εb . Therefore,

for any k ∈ [N ], we can define the event Ωk ≡ {λM (S(X̃(k)))− ζ̄−,t ≥ Ckt2} with P(Ωk) ≥ 1−N−D for
arbitrary large D.

Choosing τ ≤ mink Ck/2. For any ζ satisfying |ζ − ζ̂e| ≤ τt2, we define

Fk(ζ) := log |1 + x̃>k (G(X̃(k), ζ))x̃k|2, F̃k(ζ) := log |1 + x̃>k (G(X̃(k), ζ))diagx̃k|2.

Since |λM (S(X̃(k))) − ζ| = |λM (S(X̃(k))) − ζ̂e| − |ζ − ζ̂e| ≥ Ckt
2/2 > 0 on Ωk, we can obtain that

Re (x̃>k (G(X̃(k), ζ))x̃k)∨Re (x̃>k (G(X̃(k), ζ))diagx̃k) ≥ 0. Hence, the functions Fk(ζ), F̃k(ζ) are well defined
on the event Ωk. For any ζ ∈ Ξ(τ), using Cauchy integral formula with a cutoff of the contour chosen
carefully, we can express Yk ≡ Yk(ζ) as

Yk =
t

2πiN1−α/4 (Ek − Ek−1)

∮
ω∩γ

Fk(z)

(z − ζ)2
dz + errk(ζ) =: Ik(ζ) + errk(ζ),

with the contour ω ≡ {z ∈ C : |z − ζ| = τt2/10} and γ ≡ {z ∈ C : |Im z| ≥ N−100}, and errk collects all
the tiny error terms which will not affect our further analysis. Similarly, we can define Ĩk(ζ) and ẽrrk(ζ)
for Ỹk in the same manner as shown above. Therefore,

Ek−1(YkY
′
k)− Ek−1(ỸkỸ

′
k) = Ek−1((Ik(ζ)Ik(ζ ′))− Ek−1((Ĩk(ζ)Ĩk(ζ ′)) + HOT,

where HOT collects terms containing errk(ζ) or ẽrrk(ζ), which are irrelevant in our analysis. For the
leading term, since Fk(z), F̃k(z),F̃k(z),F̃k(z′) are uniformly bounded on z ∈ ω ∩ γ and z′ ∈ ω′ ∩ γ, we
may commute the conditional expectation and the integral to obtain

Ek−1((Ik(ζ)Ik(ζ ′))− Ek−1((Ĩk(ζ)Ĩk(ζ ′)) = − t2

4π2N2−α/2

∮
ω∩γ

∮
ω′∩γ

ϕk(z, z′)− ϕ̃k(z, z′)

(z − ζ)2(z′ − ζ ′)2
dz′dz, (S.6.2)

where

ϕk(z, z′) := Ek−1

(
(Ek − Ek−1)Fk(z)(Ek − Ek−1)Fk(z′)

)
ϕ̃k(z, z′) := Ek−1

(
(Ek − Ek−1)F̃k(z)(Ek − Ek−1)F̃k(z′)

)
,
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and ω′ := {z ∈ C : |z − ζ ′| = at2} with a small constant a.
In view of (S.6.2), it suffices to prove that uniformly on z ∈ ω ∩ γ and z′ ∈ ω′ ∩ γ, ϕk − ϕ̃k ≡

ϕk(z, z′) − ϕ̃k(z, z′) � t2N1−α/2. In the sequel, we write Fk = Fk(z), F̃k = F̃k(z), F ′k = Fk(z′), and
F̃ ′k = F̃k(z′) for simplicity. Let

ηk = ηk(z) := x̃>k (G(X(k), z))x̃k − x̃>k (G(X̃(k), z))diagx̃k =
∑
i 6=j

[G(X̃(k), z)]ij x̃ikx̃jk,

and
εk = εk(z) := Fk − F̃k = log |1 + ηk(1 + x̃>k (G(X̃(k), z))diagx̃k)−1|2.

We also write η′k ≡ ηk(z′) and ε′k ≡ εk(z′). Using the following elementary identity,

Ek−1

(
(Ek − Ek−1)(A)(Ek − Ek−1)(B)

)
= Ek−1

(
Ek(A)Ek(B)

)
− Ek−1(A)Ek−1(B),

we may rewrite ϕk and ϕ̃k as

ϕk = Ek−1

(
Ek(Fk)Ek(F ′k)

)
− Ek−1(Fk)Ek−1(F ′k),

ϕ̃k = Ek−1

(
Ek(F̃k)Ek(F̃ ′k)

)
− Ek−1(F̃k)Ek−1(F̃ ′k).

Therefore, let Ex̃k denote the expectation with respect to the randomness of k-th column of X̃, we have
by the definitions of εk, ε′k,

ϕk − ϕ̃k = Ex̃k
(
Ek(F̃k)Ek(ε′k)

)
+ Ex̃k

(
Ek(F̃ ′k)Ek(εk)

)
+ Ex̃k

(
Ek(εk)Ek(ε′k)

)
− EkEx̃k(F̃k)EkEx̃k(ε′k)− EkEx̃k(F̃ ′k)EkExk(εk)− EkEx̃k(ε′k)EkEx̃k(εk)

≡ T1 + T2 + T3 + T4 + T5 + T6.

Before bounding Ti’s, 1 ≤ i ≤ 6, we introduce some shorthand notation for simplicity. Let

Jk = Jk(z) :=
1

1 + x̃>k G(X̃(k), z)x̃k
, Jk,diag = Jk,diag(z) :=

1

1 + x̃>k (G(X̃(k), z))diagx̃k
,

and J ′k = Jk(z′), J ′k,diag = Jk,diag(z′). Further set

Jk,Tr :=
1

1 +
σ2
N

N TrG(X̃(k), z)
, E := x̃>k (G(X̃(k), z))diagx̃k −

σ2
N

N
TrG(X̃(k), z).

This gives Jk,diag = Jk,Tr − EJk,TrJk,diag. We may now establish an upper bound for Ex̃k(εk) as follows:

Ex̃k(εk) = Ex̃k log |1 + ηkJk,diag|2
(i)

≤ logEx̃k |1 + ηkJk,diag|2

= logEx̃k(1 + 2Re (ηkJk,Tr − ηkEJk,TrJk,diag) + |ηkJk,diag|2)

(ii)

≤ log
(
1 +O(Ex̃k(|ηk||E|)) +O(Ex̃k(|ηk|2))

)
,

where, in (i), Jensen’s inequality is applied, and in (ii), we used the fact that Jk,Tr and Jk,diag are
uniformly bounded for ζ ∈ Ξ on the event Ωk. Similarly, using the identity |1 + ηkJk,diag||1− ηkJk| = 1,
we have

Ex̃k(−εk) = Ex̃k log |1− ηkJk|2 = Ex̃k log |1− ηkJk,Tr − ηk(ηk + E)Jk,diagJk|2

≤ log
(
1 +O(Ex̃k(|ηk||E|)) +O(Ex̃k(|ηk|2))

)
.

By the Cauchy-Schwarz inequality and Lemma S.6.1 and Lemma S.6.2,

Ex̃k(|ηk||E|) ≤
√

Ex̃k(|ηk|2) · Ex̃k(|E|2) . N−1/2t−2Nϑ(2−α/2)−1/2‖G(X̃(k), z)‖

15



Since ϑ = 1/4 + 1/α+ εϑ > 1/4 + 1/α, and recall that ‖G(X̃(k), z)‖ ≤ |λ1(S(X̃(k)))− z|−1 . t−2 on Ωk,
the above bound can be further simplified as

Ex̃k(|ηk||E|) . N1−α/2 ·N2/α+3α/8+εϑ(4−α)/2−2t−4.

By the facts εϑ < (3α − 5)/(4α) and t � N (α−4)/48, it can be verified that Ex̃k(|ηk||E|) � t2N1−α/2.
Therefore, we can conclude that |Ex̃k(εk)| � t2N1−α/2. This shows |T6| � t2N1−α/2. Together with the
crude bound F̃k ≤ log |1 +N2ϑ‖G(X̃(k), z)‖|2 . logN , we have |T4|, |T5| � t2N1−α/2.

For |T3|, by Cauchy-Schwarz inequality, it suffices to give a bound on Ex̃k
(
|Ek(εk)|2

)
. By Jensen’s

inequality,

Ex̃k
(
|Ek(εk)|2

)
≤ EkEx̃k(|εk|2).

Using again the identity |1 + ηkJk,diag||1− ηkJk| = 1,

| log |1 + ηkJk,diag|2| = 1{|1+ηkJk,diag|≥1} log |1 + ηkJk,diag|2 + 1{|1−ηkJk|>1} log |1− ηkJk|2

= 1{|1+ηkJk,diag|>1} log(1 + 2Re (ηkJk,diag) + |ηkJk,diag|2) + 1{|1−ηkJk|>1} log(1− 2Re (ηkJk) + |ηkJk|2)

≤ 1{|1+ηkJk,diag|>1}
(
2Re (ηkJk,diag) + |ηkJk,diag|2

)
+ 1{|1−ηkJk|>1}

(
− 2Re (ηkJk) + |ηkJk|2

)
.

Therefore, with the fact that |ηkJk,diag| ≤ NC for some C > 0,

Ex̃k | log |1 + ηkJk,diag|2|2 . logN · Ex̃k log |1 + ηkJk,diag|2 . logN · Ex̃k(|ηk|2) . N−1t−5,

which gives |T3| � t2N1−α/2 by the fact t� N−2/7+α/14.
To evaluate |T2|, we start by expressing it as follows:

T2 = Ex̃k
(
Ek(εk)Ek(log |1 +N−1σ2

NTrG(X̃(k), z′) + E|2)
)

= Ex̃k
(
Ek(εk)Ek(log |1 +N−1σ2

NTrG(X̃(k), z′)|2)
)

+ Ex̃k
(
Ek(εk)Ek(log |1 + EJk,Tr|2)

)
.

First, we use the fact that log |1 + N−1σ2
NTrG(X̃(k), z)|2 is independent of x̃k and that Ex̃k(εk) = 0 to

obtain the inequality
T2 . Ex̃k

(
|Ek(εk)| · Ek|E|

)
.

Next, we apply the Cauchy-Schwarz inequality to obtain

T2 ≤
√

Ex̃k
(
|Ek(εk)|2

)
Ex̃k

(
|Ek(|E|)|2

)
.

Finally, by Jensen’s inequality, we have

T2 ≤
√

EkEx̃k
(
|εk|2

)
EkEx̃k

(
|E|2

)
≤ N1−α/2 ·N2/α+3α/8+εϑ(4−α)/2−2t−9/2.

The bound |T2| � t2N1−α/2 follows by the facts εϑ < (3α−5)/(4α) and t� N (α−4)/56. The same bound
holds for |T1|. Therefore, we can obtain that for any z ∈ ω ∩ γ and z′ ∈ ω′ ∩ γ, |ϕk − ϕ̃k| � t2N1−α/2,
which conludes the proof.

Lemma S.6.1 ([4], Lemma 4.1). Let a ≡ (a1, · · · , aN )> be a column vector whose entries are
i.i.d. centered and satisfy (ii) and (iii) in Lemma 3.12. Then for deterministic matrix G, the random
variables

X ≡
∑
i 6=j

Gijaiaj , E ≡
∑
i

Giia
2
i −

1

N
TrG

satisfy

E|X|2 ≤ 2N−1‖G‖2, E|E|2 ≤ 10C(‖G‖2 + 1)Nϑ(4−α)−1.
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The following lemma is a directly consequence of Lemma S.6.1.

Lemma S.6.2. Fix C > 0. For any ζ ∈ {ξ ∈ C : |ξ− ζ̄−,t| ≤ Ct2}, we have there exist constant τ = τ(C)

such that Ex̃k(|ηk|2) ≤ τ−2N−1t−4 on the event Ωk = {λ1(S(X̃(k)))− ζ̄−,t ≥ τt2}.

7 Proof of Lemma 5.1

We need the following lemma on the monotonicity of the Green function to the linearization of S(Y γ).

Lemma S.7.1 ([3], Lemma 2.1). For deterministic matrix A ∈ RM×N , let L(A) be defined as in Eq. (76)
Further define Γ(z) := maxi,j∈[M+N ][(L(A)− z)−1]ij ∨ 1. We have for any L > 1 and z ∈ C+, we have
Γ(E + iη/L) ≤ LΓ(E + iη).

Recall that for any δ > 0, z = E + iη ∈ D,

P0(δ, z,Ψ) = PΨ

(
sup

a,b∈[M ]
0≤γ≤1

|z1/2Xab[G
γ(z)]ab| > Nδ

)
,

P1(δ, z,Ψ) = PΨ

(
sup

u,v∈[N ]
0≤γ≤1

|z1/2Yuv[Gγ(z)]uv| > Nδ
)
,

P2(δ, z,Ψ) = PΨ

(
sup

a∈[M ],u∈[N ]
0≤γ≤1

|Zau[Gγ(z)Y γ ]au| > Nδ
)
.

Now let us give the proof of Lemma 5.1.

Proof of Lemma 5.1. Let p be any sufficiently large (but fixed) integer, and Fp(x) := |x|2p + 1. It can

be easily verified that there exists a constant Cp, only depends on p such that |F (a)
p (x)| ≤ CpFp(x),

for all x ∈ R and a ∈ Z+. Recall Theorem 4.2, and we will focus on the case when (#1,#2,#3) =
(XabIm [Gγ(z)]ab, XabIm [G0(z)]ab, I0,ab) therein. Applying Theorem 4.2 with F (x) = Fp(x), we have
for any a, b ∈ [M ], there exists constant C1 > 0 such that,

EΨ

(
Fp(XabIm [Gγ(z)]ab)

)
− EΨ

(
Fp(XabIm [G0(z)]ab)

)
< C1N

−ω(Ip,0 + 1) + C1Q0N
C1 ,

where Ip,0 ≡ supi,j∈[M ],0≤γ≤1 EΨ

(∣∣Fp(XijIm [Gγ(z)]ij)
∣∣). Taking supremum over a, b ∈ [M ] and 0 ≤ γ ≤

1 yields

(1− C1N
−ω)Ip,0 ≤ max

i,j∈[M ]
EΨ

(
Fp(XijIm [G0(z)]ij)

)
+ C1N

−ω + 3C1N
C1 max

k∈[0:2]
Pk(ε, z,Ψ).

Applying Lemma S.7.1 on R(Y γ , z) = z−1/2(L(Y γ)− z1/2)−1 with z1/2 = Ẽ + iη̃, we have,

max
i,j∈[M+N ]

|z1/2[R(Y γ , z)]ij | ∨ 1 ≤ L
(

max
i,j∈[M+N ]

|(z′)1/2[R(Y γ , z′)]ij | ∨ 1
)
,

for any L > 0 and z′ ∈ C+ satisfies (z′)1/2 = Ẽ + iLη̃. Let L ≡ Nε/6 and thus (z′)1/2 ≡ Ẽ + iNε/6η̃, to
obtain

max
i,j∈[M ]

|z1/2[Gγ(z)]ij | ∨ 1, max
i,j∈[N ]

|z1/2[Gγ(z)]ij | ∨ 1, max
i∈[M ],j∈[N ]

|[Gγ(z)Y γ ]ij | ≤ S,

where

S ≡ Nε/6
(

max
i,j∈[M ]

|(z′)1/2[Gγ(z′)]ij | ∨ max
i,j∈[N ]

|(z′)1/2[Gγ(z′)]ij | ∨ max
i∈[M ],j∈[N ]

|[Gγ(z′)Y γ ]ij | ∨ 1
)
.
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This implies that

max
k∈[0:2]

Pk(ε, z,Ψ) ≤ max
k∈[0:2]

Pk(ε/2, z′,Ψ). (S.7.1)

For any z0 = E0 +iη0 ∈ D(ε1, ε2, ε3), we have EΨ

(
Fp(XijIm [G0(z0)]ij)

)
. N (cf. Theorem 2.8). Then

there exists some large constant C2 > 0 such that

Ip,0 ≤ C2N + C2N
C2 max

k∈[0:2]
Pk(ε, z0,Ψ).

Using (S.7.1) by setting z ≡ z0, we have for z1 = E1 + iη1 where (E1, η1) are defined through (73),

Ip,0 ≤ C2N + C2N
C2 max

k∈[0:2]
Pk(ε/2, z1,Ψ).

For any a, b ∈ [M ], and 0 ≤ γ ≤ 1, applying Markov’s inequality with the fact that pδ > D + 100, we
have that there exists some large constant C3 > 0 such that

PΨ

(
|z1/2

0 Xab[ImGγ(z0)]ab| > Nδ
)
≤
|z0|p/2EΨ

(∣∣Fp(XabIm [Gγ(z0)]ab)
∣∣)

Npδ
≤ |z1|p/2Ip,0

Npδ

≤ C3N
−D−90 + C3N

C2 max
k∈[0:2]

Pk(ε/2, z1,Ψ),

where in the last step we used the fact that |z0| is bounded. Similar bound holds when Im is replaced
by Re , we omit the details. Now we may apply union bounds on i, j ∈ [M ] and an ε-net argument on γ
with the following deterministic bounds∣∣∣∣∂[Gγ(z)]ab

∂γ

∣∣∣∣ . ‖A‖+ γ‖t1/2W‖
η2

,

η > N−1, ‖A‖ ≤ N1/2 and P(‖t1/2W‖ > 2) < N−D, to obtain that

P0(δ, z0,Ψ) =PΨ

(
sup

a,b∈[M ]
0≤γ≤1

|z1/2
0 Xab[G

γ(z0)]ab| > Nδ
)

≤ C4N
−D−50 + C4N

C4 max
k∈[0:2]

Pk(ε/2, z1,Ψ),

for some large constant C4 > 0. Repeating the above procedure for all Pk(δ, η,Ψ), k = 1, 2 proves the
claim.

8 Proof of Corollary

We prove this corollary using a similar argument as in [Section 4, [11]] or [Section 4, [8]]. The key inputs
are the rigidity estimate in Theorem 4.4 and the Green function comparison in Theorem 4.5.

Proof of Corollary . Let us first define for any E,

N (E) :=
∣∣{i : λi(S(Y )) ≤ λ−,t + E}

∣∣.
For any ε > 0, we take ` = N−2/3−ε/3 and η = N−2/3−ε. Recall from Theorem 4.4 that λM (S(Y )) ≥
λ−,t −N−2/3+ε holds with high probability. We further define

χE(x) := 1[−N−2/3+ε,E](x− λ−,t),

θη(x) :=
η

π(x2 + η2)
=

1

π
Im

1

x− iη
.
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Then following the same arguments as in [Lemma 2.7, [10]], we can obtain that for |E| ≤ N−2/3+ε, the
following holds with high probability:

Tr(χE−` ∗ θη)(S(Y ))−N−ε/9 ≤ N (E) ≤ Tr(χE+` ∗ θη)(S(Y )) +N−ε/9.

Let K(x) : R→ [0, 1] be a smooth monotonic increasing function such that

K(x) = 1 if x ≥ 2/3, K(x) = 0 if x ≤ 1/3.

Therefore, we have with high probability that

K(Tr(χE−` ∗ θη)(S(Y ))) +O(N−ε/9) ≤ K(N (E)) = 1N (E)≥1

≤ K(Tr(χE+` ∗ θη)(S(Y ))) +O(N−ε/9).

Taking expectation on the above inequality, we have for |s| ≤ N ε/2 that

E

[
K

(
Im

[
N

π

∫ sN−2/3−`

−N−2/3+ε

m1(λ−,t + y + iη)

]
dy

)]
+O(N−ε/9)

≤ P
(
N2/3(λM (S(Y ))− λ−,t) ≤ s

)
= E

[
1N (sN−2/3)≥1

]
≤ E

[
K

(
Im

[
N

π

∫ sN−2/3+`

−N−2/3+ε

m1(λ−,t + y + iη)

]
dy

)]
+O(N−ε/9). (S.8.1)

Similarly, repeating the above arguments with S(Y ) replaced by S(Vt), we can also have

E

[
K

(
Im

[
N

π

∫ sN−2/3−`

−N−2/3+ε

m0(λ−,t + y + iη)

]
dy

)]
+O(N−ε/9)

≤ P
(
N2/3(λM (S(Vt))− λ−,t) ≤ s

)
≤ E

[
K

(
Im

[
N

π

∫ sN−2/3+`

−N−2/3+ε

m0(λ−,t + y + iη)

]
dy

)]
+O(N−ε/9). (S.8.2)

Note that the conditional expectation EΨ in (68) can be replaced by E using the law of total expectation
together with the fact that ΩΨ holds with high probability. Therefore, we can combine (S.8.1) and (S.8.2)
with (68) to obtain that

P
(
N2/3(λM (S(Vt))− λ−,t) ≤ s− 2`N−2/3

)
+O(N−ε/9) ≤ P

(
N2/3(λM (S(Y ))− λ−,t) ≤ s

)
≤ P

(
N2/3(λM (S(Vt))− λ−,t) ≤ s+ 2`N−2/3

)
+O(N−ε/9).

Now (69) follows by the fact that `N−2/3 � 1. For (70), we first note by Theorem 2.12 that

|λ−,t − λshift| ≤ N−2/3+ε (S.8.3)

holds in probability. This together with Theorem 4.4 implies that

|λM (S(Y ))− λshift| ≤ N−2/3+ε

also holds in probability. Then we may proceed similar to the proof of (69), but with all high probability
estimates replaced by in probability estimates. It’s worth noting that during the derivation of (S.8.1) and
(S.8.2), the error term O(N−ε/9) will become o(1) because we lack an polynomial bound for the failure
probability of (S.8.3). Finally, we can conclude the proof of (70) by using Theorem 4.5.
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9 Proof of Theorem 4.5

Proof. To ease presentation, we show the proof of the following comparison instead: for any |E| ≤
N−2/3+ε,∣∣∣EΨ

(
F (Nη0Imm1(λ−,t + E + iη0))

)
− EΨ

(
F (Nη0Imm0(λ−,t + E + iη0))

)∣∣∣ ≤ CN−δ1 . (S.9.1)

The proof of (68) is similar, and thus we omit it. Using the same notation as in the proof of Theorem
4.3 and further defining hγ,(ij)(λ, β) ≡ η0

∑
a fγ,(aa),(ij)(λ, , β), we have

∂EΨ

(
F (Nη0Immγ(zt))

)
∂γ

= −2
(∑
i,j

(I1)ij − (I2)ij

)
,

with

(I1)ij ≡ EΨ

[
AijF

′
(
hγ,(ij)

(
[Y γ ]ij , Xij

))
g(ij)

(
[Y γ ]ij , Xij

)]
,

(I2)ij ≡
γt1/2

(1− γ2)1/2
EΨ

[
wijF

′
(
hγ,(ij)

(
[Y γ ]ij , Xij

))
g(ij)

(
[Y γ ]ij , Xij

)]
.

We first consider the estimation for (I1)ij . Notice that (I1)ij can be further decomposed as

(I1)ij = (I1)ij · 1ψij=0 + (I1)ij · 1ψij=1 = (I1)ij · 1ψij=0,

where in the last step we used the fact that Aij · 1ψij=1 = 0. Therefore, we only need to consider the
case when ψij = 0, and (I1)ij can be rewritten as

(I1)ij = EΨ

[
(1− χij)aijF ′

(
hγ,(ij)(dij , χijbij)

)
g(ij)(dij , χijbij)

]
· 1ψij=0.

By Taylor expansion, for an s1 > 0 to be chosen later, there exists d̃ij ∈ [0, dij ] such that,

(I1)ij =

s1∑
k1=0

1

k1!
EΨ

[
(1− χij)aijdk1ij g

(k1,0)
(ij) (0, χijbij)F

′(hγ,(ij)(dij , χijbij))] · 1ψij=0

+
1

(s1 + 1)!
EΨ

[
(1− χij)aijds1+1

ij g
(s1+1,0)
(ij) (d̃ij , χijbij)F

′(hγ,(ij)(dij , χijbij))] · 1ψij=0

≡
s1∑

k1=0

(I1)ij,k1 + Rem1.

Using (96)-(98), ,the perturbation argument as in (80), and the fact that Immγ(zt) ≺ 1, we have for any
(small)ε > 0 and (large)D > 0,

PΨ

(
Ωε,1 :=

{∣∣g(s1+1,0)
(ij) (d̃ij , χijbij)F

′(hγ,(ij)(dij , χijbij))∣∣ · 1ψij=0 < t−s1−2N ε
})
≥ 1−N−D.

Further, by the Gaussianity of wij , we have

PΨ

(
Ωε,2 :=

{
max

i∈[M ],j∈[N ]
|t1/2wij | < N−1/2+ε

})
≥ 1−N−D.

Let Ωε := Ωε,1 ∩ Ωε,2. Then

|Rem1| . EΨ

[
|(1− χij)aijds1+1

ij | ·
∣∣g(s1+1,0)

(ij) (d̃ij , χijbij)F
′(hγ,(ij)(dij , χijbij))∣∣ · 1Ωε

]
· 1ψij=0
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+ EΨ

[
|(1− χij)aijds1+1

ij | ·
∣∣g(s1+1,0)

(ij) (d̃ij , χijbij)F
′(hγ,(ij)(dij , χijbij))∣∣ · 1Ωcε

]
· 1ψij=0

(i)

. EΨ

[
|(1− χij)aijds1+1

ij | ·
∣∣g(s1+1,0)

(ij) (d̃ij , χijbij)F
′(hγ,(ij)(dij , χijbij))∣∣ · 1Ωε

]
· 1ψij=0

+N−D+C1+2(s1+3)

(ii)

.
N ε

N1/2+εb(s1+1)ts1+2
, (S.9.2)

where in (i) we used the deterministic bound
∣∣g(s1+1,0)

(ij) (d̃ij , χijbij)F
′(hγ,(ij)(dij , χijbij))∣∣ ≤ NC1+2(s1+3)

when η ≥ N−2, and (ii) is a consequence of the definition of Ωε. Choosing s1 sufficiently large, i.e.,
s1 > 4/εb, and t� N−εb/2 we can obtain

|Rem1| . N−5/2.

For (I1)ij,k1 , we need to further expand F ′
(
hγ,(ij)(dij)

)
as follows:

F ′
(
hγ,(ij)(dij , χijbij)

)
=

s2∑
k=0

dkij
k!

∂kF ′

∂dkij

(
hγ,(ij)(0, χijbij)

)
+

ds2+1
ij

(s2 + 1)!

∂kF ′

∂dkij

(
hγ,(ij)(d̂ij , χijbij)

)
,

where s2 is a positive integer to be chosen later, and d̂ij ∈ [0, dij ]. Then (I1)ij,k1 can be rewritten as,

(I1)ij,k1 =

s2∑
k2=0

1

k1!k2!
EΨ

[
(1− χij)aijdk1+k2

ij g
(k1,0)
(ij) (0, χijbij)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, χijbij)

)]
· 1ψij=0

+
1

k1!(s2 + 1)!
EΨ

[
(1− χij)aijdk1+s2+1

ij g
(k1,0)
(ij) (0, χijbij)

∂s2+1F ′

∂ds2+1
ij

(
hγ,(ij)(d̂ij , χijbij)

)]
· 1ψij=0

≡
s2∑

k2=0

(I1)ij,k1k2 + Rem2.

By Faà di Bruno’s formula, we have for any integer n > 0,

∂nF ′

∂dnij

(
hγ,(ij)(dij , χijbij)

)
=

∑
(m1,··· ,mn)

n!

m1!m2! ·mn!
· F (m1+···+mn+1)

(
hγ,(ij)(dij , χijbij)

)

×
n∏
`=1

(
h

(`)
γ,(ij)(dij , χijbij)

`!

)m`
(S.9.3)

Considering (S.9.3), (96)-(98), and using the perturbation argument as described in (80), we arrive at
the following result:

∂s2+1F ′

∂ds2+1
ij

(
hγ,(ij)(d̂ij , χijbij)

)
≺

n∏
`=1

t−(`+1)m` ≤ t−2n. (S.9.4)

Moreover, taking into account the fact that g
(k1)
(ij) (0) ≺ t−(k1+1), we can deduce that:

|Rem2| .
N ε

N1/2+εb(k1+s2+1)tk1+2(s2+1)
. N−5/2,

where, for the final step, we have chosen s2 ≥ 4/εb and t � N−εb/4. Next, we estimate (I1)ij,k1k2 in
different cases.
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Case 1: k1 + k2 is even. By the law of total expectation,

(I1)ij,k1k2

=
1ψij=0

k1!k2!

1∑
n=0

EΨ

[
(1− χij)aijdk1+k2

ij g
(k1,0)
(ij) (0, χijbij)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, χijbij)

)∣∣∣∣χij = n

]
P(χij = n)

=
1ψij=0

k1!k2!
EΨ

[
aijd

k1+k2
ij g

(k1,0)
(ij) (0, 0)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, 0)

)∣∣∣∣χij = 0

]
P(χij = 0)

=
1ψij=0 = 0

k1!k2!
EΨ

[
aijd

k1+k2
ij

∣∣∣∣χij = 0

]
EΨ

[
g

(k1,0)
(ij) (0, 0)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, 0)

)]
P(χij = 0), (S.9.5)

where the last step follows from the symmetry condition.
Case 2: k1 + k2 is odd and k1 + k2 ≥ 5. Similar to (S.9.5), we have

|(I1)ij,k1k2 | .
∣∣∣∣EΨ

[
aijd

k1+k2
ij

∣∣∣∣χij = 0

]∣∣∣∣EΨ

[
|g(k1,0)

(ij) (0, 0)|
∣∣∣∣∂k2F ′∂dk2ij

(
hγ,(ij)(0, 0)

)∣∣∣∣∣∣∣∣χij = 0

]
P(χij = 0)1ψij=0

.
1

N2+2εa+(k1+k2−3)εb
EΨ

[
|g(k1,0)

(ij) (0, χijbij)|
∣∣∣∣∂k2F ′∂dk2ij

(
hγ,(ij)(0, χijbij)

)∣∣∣∣]1ψij=0,χij=0.

We may again obtain the bound |g(k1)
(ij) (0, χijbij)| ·1ψij=0,χij=0 ≺ t−(k1+1) by (96)-(98), and the perturba-

tion argument as described in (80). Using (i)equation (S.9.3) with dij replaced by 0, and (ii)the following
rank inequality,

|hγ,(ij)(0, χijbij)− hγ,(ij)(dij , χijbij)| · 1ψij=0,χij=0 ≤ 2η0

(
‖Gγ,dij(ij) (zt)‖+ ‖Gγ,0(ij)(zt)‖

)
1ψij=0,χij=0 ≤ 2,

(S.9.6)

with the fact that hγ,(ij)(dij , χijbij) · 1ψij=0,χij=0 ≺ 1, we can obtain that∣∣∣∣∂k2F ′∂dk2ij

(
hγ,(ij)(0, χijbij)

)∣∣∣∣ · 1ψij=0,χij=0 ≺ t−2k2 . (S.9.7)

Combining the above estimates and choosing t� N−εb/8, we arrive at

|(I1)ij,k1k2 | .
N ε

N2+2εa+(k1+k2−3)εbtk1+1+2k2
.

1

N2+2εa
.

Case 3: k1 + k2 = 3. The estimation in this case is similar to Case 2 above, but we need to use the

bound g
(k1,0)
(ij) (0, χijbij) ≺ 1 when i ∈ Tr and j ∈ Tc. Recall that |Dr| ∨ |Dc| ≤ N1−εd . Then we have

|(I1)ij,k1k2 | .
N ε

N2+2εa
· 1ψij=0 · 1i∈Tr,j∈Tc +

1

N2−εd
· N ε

N2εa+εdtk1+1+2k2
· 1ψij=0 · (1− 1i∈Tr,j∈Tc)

.
1

N2+εa
· 1ψij=0 · 1i∈Tr,j∈Tc +

1

N2−εd+εa
· 1ψij=0 · (1− 1i∈Tr,j∈Tc),

where in the last step, we used the fact t� N−εd/8.
Case 4: k1 + k2 = 1. In this case, using (S.9.5) we may compute that

(I1)ij,k1k2 = EΨ

[
γa2

ij

]
· EΨ

[
g

(k1,0)
(ij) (0, 0)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, 0)

)∣∣∣∣χij = 0

]
· P(χij = 0) · 1ψij=0.

We note that there will be corresponding terms in (I2)ij , and these terms will cancel out with the ones
described above.
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Combining the estimates in the above cases, we can obtain that there exists some constant δ1 = δ1(εa)
such that ∑

i,j

(I1)ij =
∑
i,j

∑
k1,k2≥0,
k1+k2=1

EΨ

[
γa2

ij

]
· EΨ

[
g

(k1,0)
(ij) (0, 0)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, 0)

)]

× P(χij = 0) · 1ψij=0 +O(N−δ1). (S.9.8)

Next, we consider the estimation for (I2)ij . When ψij = 1, we can apply Gaussian integration by
parts to obtain that

|(I2)ij · 1ψij=1| .
t1/2

N
EΨ

[∣∣∣∂wij{g(ij)(eij , cij)F
′(hγ,(ij)(eij , cij))}∣∣∣] · 1ψij=1 .

N ε

Nt
· 1ψij=1,

where the last step follows from (96)-(98). The estimation for (I2)ij · 1ψij=0 is similar to those of (I1)ij ,
we omit repetitive details. In summary, with the independence between zt and wij , we have by possibly
adjusting δ1,∑

i,j

(I2)ij =
∑
i,j

(I2)ij · 1ψij=0 +
∑
i,j

(I2)ij · 1ψij=1

=
∑
i,j

∑
k1,k2≥0,
k1+k2=1

EΨ

[
γtw2

ij

]
EΨ

[
g

(k1,0)
(ij) (0, χijbij)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, χijbij)

)]
· 1ψij=0 +O(N−δ1). (S.9.9)

Note by (87) and the choices of εa and εb, we have

EΨ

[
γa2

ij

]
P(χij = 0)− EΨ

[
γtw2

ij

]
= O

(
t

N2+2εb

)
.

This together with the t dependent bounds for g
(k1,0)
(ij) and ∂k2F ′/(∂dk2ij ) implies that it suffices to bound

the following quantity:

G :=

(
EΨ

[
g

(k1,0)
(ij) (0, χijbij)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, χijbij)

)]
− EΨ

[
g

(k1,0)
(ij) (0, 0)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, 0)

)])
· 1ψij=0

To provide a more precise distinction between (S.9.8) and (S.9.9), we let

Fk1,k2(z
(ij)
t (β)) := g

(k1)
(ij) (0, β)

∂k2F ′

∂dk2ij

(
hγ,(ij)(0, β)

)
.

Therefore,

G =

(
EΨ

[
Fk1,k2

(
zt(χijbij)

)]
− EΨ

[
Fk1,k2

(
zt(0)

)])
· 1ψij=0.

We may apply Taylor expansion to obtain that(
EΨ

[
Fk1,k2

(
zt(χijbij)

)]
− EΨ

[
Fk1,k2

(
zt(0)

)])
· 1ψij=0

= EΨ

[
χ2
ijb

2
ijF
′
k1,k2

(
zt(b)

)
· ∂

2λ−,t
∂B2

ij

(b)

]
· 1ψij=0 + EΨ

[
χ2
ijb

2
ijF
′′
k1,k2

(
zt(b)

)
·
(
∂λ−,t
∂Bij

(b)

)2]
· 1ψij=0,

(S.9.10)
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with b ∈ [0, Bij ]. Here the first oder term disappeared due to symmetry. To bound the above terms
we need to first verify that zt(b) still lies inside D (w.h.p). This can be done by noting that for the
replacement matrix X(ij)(b) which replace the Bij by b in X still satisfies the η∗- regularity. Therefore
by Weyl’s inequality,

|λ−,t(χijbij)− λ−,t(b)| ≺ |λ−,t(χijbij)− λM (S(X))|+ |λM (S(X))− λM (S(X(ij)(b)))|
+ |λM (S(X(ij)(b)))− λ−,t(b)| ≺ N−2/3 +N−εb +N−2/3 ≺ N−εb . (S.9.11)

Applying the perturbation argument as in (80) to relate g
(k1)
(ij) (0, b) back to g

(k1)
(ij) (dij , b), and then using

(S.9.11) to verify that z
(ij)
t (b) ∈ D, we can see that the bound g

(k1)
(ij) (0, b) ≺ t−(k1+1) still holds. Similarly,

we can also obtain h
(k2)
γ,(ij)(0, b) ≺ t

−k2 for k2 ≥ 1. For the case when k2 = 0, we may use (S.9.6) and the

fact that Nη0Immγ(z
(ij)
t (b)) ≺ 1 to conclude that hγ,(ij)(0, b) ≺ 1. Combining the above bounds with a

Cauchy integral argument, we have

F′k1,k2
(
zt(b)

)
≺ 1

η0t2
, F′′k1,k2

(
zt(b)

)
≺ 1

η2
0t

2
.

Further using Lemma 5.4, we have for arbitrary (small)ε > 0 and (large)D > 0,

P
(

Ω :=
{∣∣∣F′k1,k2(zt(b)) · ∂2λ−,t

∂B2
ij

(b)
∣∣∣ ≤ N ε

Nη0t7

}⋂{∣∣∣F′′k1,k2(zt(b)) · (∂λ−,t∂Bij
(b)

)2∣∣∣ ≤ N ε

N2η2
0t

8

})
≥ 1−N−D.

Since

χ2
ijb

2
ij

(
F′k1,k2

(
zt(b)

)
· ∂

2λ−,t
∂B2

ij

(b) + F′′k1,k2
(
zt(b)

)
·
(
∂λ−,t
∂Bij

(b)

)2)
· 1ψij=0

=
(
Fk1,k2

(
zt(χijbij)

)
− Fk1,k2

(
zt(0)

))
· 1ψij=0 −

(
χijbijF

′
k1,k2(zt(0)) · ∂λ−,t

∂Bij
(0)
)
· 1ψij=0,

the deterministic upper bound for the left hand side of the above equation follows from (89) in Lemma
5.4 and the fact that Im zt ≥ N−1. Then we may follow the steps as in (S.9.2) to obtain that

EΨ

[
χ2
ijb

2
ij

(
F′k1,k2

(
zt(b)

)
· ∂

2λ−,t
∂B2

ij

(b) + F′′k1,k2
(
zt(b)

)
·
(
∂λ−,t
∂Bij

(b)

)2)]
· 1ψij=0 .

N ε

N2η0t7

Therefore, with the fact that EΨ[γa2
ij ]P(χij = 0) ∼ tEΨ[γw2

ij ] = γt/N , we have by possibly adjusting δ1,∣∣∣∑
i,j

(I1)ij − (I2)ij

∣∣∣ =
∑
i,j

γt

N

∑
k1,k2≥0,
k1+k2=1

∣∣∣EΨ

[
Fk1,k2

(
zt(χijbij)

)]
− EΨ

[
Fk1,k2

(
zt(0)

)]∣∣∣1ψij=0 +O(N−δ1) = O(N−δ1).

This together with the arguments as in (115)-(116) completes the proof of (S.9.1). The proof for the case
α = 8/3 closely parallels, and is in fact simpler, primarily due to the absence of randomness in λshift.
Thus we omit the details. This concludes the proof.
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